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REVIEW

Through the lens of phase separation: intrinsically unstructured protein and 
chromatin looping
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ABSTRACT
The establishment, maintenance and dynamic regulation of three-dimensional (3D) chromatin 
structures provide an important means for partitioning of genome into functionally distinctive 
domains, which helps to define specialized gene expression programs associated with develop
mental stages and cell types. Increasing evidence supports critical roles for intrinsically disordered 
regions (IDRs) harbored within transcription factors (TFs) and chromatin-modulatory proteins in 
inducing phase separation, a phenomenon of forming membrane-less condensates through 
partitioning of biomolecules. Such a process is also critically involved in the establishment of high- 
order chromatin structures and looping. IDR- and phase separation-driven 3D genome (re)orga
nization often goes wrong in disease such as cancer. This review discusses about recent advances 
in understanding how phase separation of intrinsically disordered proteins (IDPs) modulates 
chromatin looping and gene expression.
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Introduction

Development of next-generation sequencing tech
nologies, especially those based on high- 
throughput chromosome conformation capture 
(Hi-C) [1–4] and derivatives such as micrococcal 
nuclease chromosome conformation assay (Micro- 
C) [5,6] and Capture Hi-C [7,8], as well as super- 
resolution fluorescence microscopy techniques [9], 
has allowed an unprecedent view into spatiotem
poral organization of three-dimensional (3D) 
chromatin structures during organismal develop
ment and cell differentiation [10–19]. Appropriate 
folding and spatial partitioning of 3D genome 
were proposed to be crucial for ensuring and/or 
facilitating a range of DNA-templated biological 
processes, such as coordinated co-transcription or 
co-silencing of genes within the same compart
ments (such as euchromatin and heterochroma
tin), the orderly genome replication, and genome 
integrity [11,13–21]. On the other hand, misregu
lation of 3D chromatin structure has been widely 
linked to, sometimes found to be causal for, 

development of diseases [22], including cancer 
[23–27], immunological malfunction [28], and 
neurological or developmental syndrome [29,30].

3D chromatin structure and genome folding are 
organized at different scales of genomic length 
[1,15,19–21,31–35], which at least include (i) seg
regation of large mega-base (Mb)-long regions into 
active (type A) and inactive (type B) compartments 
[1]; (ii) formation of sub-Mb domains termed 
Topologically Associating Domains (TADs), 
which have a median size of approximately 880 
kilobase (kb) in mouse embryonic stem cells 
(ESCs) [3]; (iii) smaller compartmental domains, 
sometimes referred to as nested TADs or sub- 
TADs, that span over a size of a few to dozens of 
kb region and can cover one to several genes 
[4,17,19,31,35]; and (iv) chromatin loops such as 
long-range enhancer–promoter interactions [34– 
36]. Chromosomal regions that fall into the same 
compartment type (type A or B) interact with each 
other more frequently than those that do not. 
Likewise, TAD/sub-TAD represents a neighboring 
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genomic region that shows a higher frequency of 
self-interaction than an equidistant region. Usually, 
TAD is enclosed by a chromatin loop, with its 
boundaries anchored by CCCTC-binding factor 
(CTCF) and cohesin, a ring-shaped multi-subunit 
complex that can entrap DNA inside its lumen 
[20,21,37].

Loop extrusion is a widely recognized model to 
explain the establishment of CTCF/cohesin loops 
and TADs [20,38–43]. Here, cohesin (Figure 1a, 
left) comprises a V-shaped dimer of Structural 
Maintenance of Chromosomes (SMC) family of 
ATPases (namely, SMC1A/1B and SMC3, all of 
which contain a ‘head’ domain carrying ATPase 
activity, a ‘hinge’ domain for dimerization of 
SMC1 and SMC3, and a long anti-parallel coiled- 
coil region connecting ‘head’ and ‘hinge’), RAD21, 
and one of two HEAT-repeat-containing subunits 
(namely, SA1 encoded by STAG1 or SA2 encoded 
by STAG2). Other HEAT-repeat-containing pro
teins, such as PDS5A/5B, NIPBL, and WAPL, also 
form contact with the core cohesin complex 
(SMC1-SMC3-RAD21) via interaction with 
RAD21 [20,21,44]. In the loop extrusion model, 
cohesin utilizes the ATP and ATPase-generated 
force for extruding DNA, which leads to progres
sive production of an enlarged loop (which can be 
~Mb in size) until cohesin is stopped by a pair of 
CTCF proteins showing a convergent orientation 
[20,38–43] (Figure 1a, right). Cohesin is also regu
lated by loader/activator (Nipped-B-like [NIPBL] 
and MAU2 [45,46]) and a cohesin-releasing factor, 
WAPL [47,48]) (Figure 1a). The WAPL-deficient 
interphase cells exhibit a characteristic thread-like 
cohesin distribution, referred to as ‘vermicelli’ (a 
special pasta in Italian), and an unusual granular 
DNA staining pattern [47,48]; on the other hand, 
Nipbl depletion leads to genome-wide disappear
ance of TADs [32–34], resembling what was 
observed upon deletion of RAD21, an extruding 
motor core subunit [33,34].

Besides loop extrusion, other mechanisms and 
molecular forces are also critically involved in 3D 
genome folding [15,16,18–20,49]. Indeed, cohesin 
deletion causes a global loss of TADs and cohesin 
loops but does not affect overall patterning of the 
type A–type B compartmentalization; additionally, 
a subset of compartments even exhibited stronger 
interactions in cohesin-deficient cells than wild- 

type (WT) controls, suggesting that TAD forma
tion and compartmentalization represent two 
independent processes [32–34]. As a matter of 
fact, compartments are more strongly correlated 
with their respective chromatin modification fea
tures in cohesin-deficient cells compared to WT 
(such as enhanced compartmentalization of type- 
A regions with histone acetylation, H3K4me3, and 
DNA accessibility or enhanced long-range interac
tions of polycomb-associated targets) [32–34]. 
Mechanisms other than loop extrusion mediate 
compartmentalization of chromatin.

Recently, the increasing amount of evidence 
points to critical roles of phase separation in deter
mining and/or shaping the landscape of 3D chro
matin structures [15,19,23,50–57]. In the next 
section, we will briefly cover the concept of phase 
separation and its involvements in establishing 
both higher-order (such as compartmentalization) 
and fine-scale 3D structures (such as loops). Then, 
the third section will be focused on recent 
advances in understanding the phase separation- 
based chromatin looping events, especially those 
driven by intrinsically disordered proteins (IDPs). 
IDPs refer to proteins enriched in intrinsically 
disordered regions (IDRs), which exhibit a strong 
tendency to phase separate [58–62]. As IDPs/IDRs 
are frequently associated with pathogenesis 
[23,63], an improved understanding of IDP-/IDR- 
associated 3D genome folding may help to develop 
new therapeutics for the affected patients.

Phase separation of biomolecules and 
regulation of 3D chromatin structure

Phase separation refers to a type of weak, multi
valent, and self-associating interaction that 
leads to the partitioning and condensation of 
biomolecules such as protein, DNA, and RNA 
and their complexes, without involvement of 
a sub-cellular membrane [55,57,64–80]. Phase 
separation, such as liquid–liquid phase separa
tion (LLPS), is known to be involved in forming 
membraneless nuclear structures such as 
nucleoli, nuclear speckle, and Cajal body. In gen
eral, phase separation can be driven by multi
valent ionic or hydrophobic interactions, which 
at least include hydrophobic stacking and pi–pi, 
electrostatic, and pi–cation interactions. For the 
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detailed concept of phase separation and the 
underlying principles, the authors shall refer to 
recent comprehensive reviews [55,57,64–80]. 
Phase separation can also be established at 

different molecular scales, which range from rela
tively simple IDRs such as aromatic-residue-rich 
or charged-residue-rich sequences (some exam
ples are those within FUS, a RNA-binding 

Figure 1. Chromatin looping driven by loop extrusion and phase separation. (a) A loop extrusion model to explain the generation of 
CTCF-/cohesin-associated structural loops/TADs. Left panel: composition and architecture of cohesin, which contains a core complex 
(SMC1-SMC3-RAD21) and the HEAT-repeat-containing regulatory factors such as SA1/SA2, NIPBL (a loader and activator of cohesin), 
and WAPL (a cohesin-releasing factor). Right panels: cohesin extrudes DNA and generates an enlarged loop until it is stalled by a pair 
of CTCF proteins in a convergent orientation. NIPBL loads cohesin to chromatin, whereas WAPL releases it off chromatin. (b) 
Enhancer (E)–promoter (P) looping due to transcription factor (TF) phase separation and condensation. Box: a simple, generalized 
scheme of TFs listed on the right, all of which harbor an intrinsically disordered region (IDR) and a DNA-binding domain (DBD). Long- 
range E–P interaction is potentiated by a phase separation mechanism, which involves self-association of TF IDRs and/or IDRs within 
coactivators (not shown). TF binding to E/P sites (left) and E–P looping (right) are the two highly coordinated processes that occur in 
condensates or the ‘hub’. Numerous cofactors (including protein and RNA; not shown) can be directly involved in condensate 
formation or passively recruited into condensates in a fashion consistent with the scaffold-client model. (c) OCT4-associated 
E-P loops cause TAD reorganization and activate pluripotency genes in an IDR-/LLPS-dependent manner. In mouse embryonic 
fibroblasts (MEFs), pluripotency genes are turned off partly due to CTCF structural TADs/loops that constrain E-P communication 
(left). During induced reprogramming of MEFs to pluripotent stem cells (PSCs), OCT4 binds E/P sites of pluripotency genes and starts 
to establish E–P loop clusters in a LLPS-dependent manner (middle and also see B). As a result, CTCF binding at TAD boundaries is 
decreased and adjacent TADs merge, leading to strong E–P contacts and pluripotency gene expression in PSCs (right).
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protein [81], and phenylalanine-glycine [FG] 
repeats in NUP98, a nucleoporin protein 
[82,83]) to repeating modular domains (such as 
SH3 domain repeats and their binding ligands in 
the nephrin–NCK–N-WASP system [79]) and to 
larger biomolecular polymers and interactors (for 
example, an array of modified mono- 
nucleosomes and readers such as BRD4 [80] 
and HP1-alpha [84,85], which are specifically 
associated with euchromatin and heterochroma
tin, respectively). Accordingly, phase separation 
is most likely to elicit very broad effects on 3D 
genome folding and looping, due to a wide range 
of molecular and genomic scales that it can oper
ate on.

First, phase separation has been proposed to be 
a driving force of compartmentalization 
[15,19,23,50,51]. In the in vitro setting, Gibson 
et al. elegantly demonstrated LLPS of chromatin, 
a process modulated by various factors such as 
linker DNA, linker histone, and post-translational 
modifications [80]. In addition, BRD4, a dual- 
bromodomain-containing reader of histone acet
ylation co-mixes with nucleosomal arrays carry
ing its ligand (histone acetylation) to form liquid 
‘droplets’ or condensates [80]. The observations 
of this work [80] and others [84–88] support 
a notion that LLPS enables the establishment, 
partitioning, and/or maintenance of compart
ments, exhibiting distinct chromatin modification 
features and transcriptional states. Misregulation 
of such a process is also relevant in human dis
eases. An example is BRD4-NUT, a chimeric 
fusion characterizing the NUT midline carcinoma 
(a rare but highly lethal cancer) [89,90]. BRD4- 
NUT forms nuclear condensates together with 
coactivators (such as p300) in a fashion consistent 
with LLPS, establishing the so-called megado
mains that are abundantly enriched with histone 
acetylation and span over long genomic regions 
(up to 2 Mb in size) [91–94]; in addition, a Hi- 
C-based study demonstrated that these BRD4- 
NUT-associated megadomains, located on either 
the same or different chromosomes, interact with 
each other and form a spatially confined com
partment termed ‘sub-compartment M’ [95]. 
More recently, another study of dividing cells 
showed a requirement of global histone deacety
lation and subsequent phase transition of mitotic 

chromatin for proper segregation of chromo
somes, which highlights a role for phase separa
tion in mediating mitosis [96].

Loop extrusion has been an elegant and widely 
accepted model to explain key aspects regarding 
the generation of CTCF/cohesin loops and TADs; 
however, it does not specifically explain why 
merely a minor fraction of CTCF/cohesin-bound 
sites form loops [4,20]. Additional molecular 
determinants exist to regulate loop extrusion. 
Both cohesin and CTCF can phase separate 
in vitro and form the clustering or puncta patterns 
in the nucleus [97–100]. Hansen et al. studied an 
internal RNA-binding region (RBRi) of CTCF and 
found that RBRi not only directly interacts with 
RNA but is also required for CTCF self-association 
and clustering [98]. Comparison of murine ESCs 
carrying a RBRi-deleted CTCF mutant with WT 
controls showed that approximately 50% of all 
CTCF loops were lost (thus defined as RBRi- 
dependent CTCF loops), whereas type A and 
B compartments were not affected [98]. RBRi- 
deleted CTCF retains interaction with cohesin in 
the co-immunoprecipitation experiment, and 
a part of RBRi-dependent CTCF loops show no 
significant alterations in CTCF/cohesin binding at 
loop anchors [98]. Thus, loss of these loops in the 
mutant cells might be due to defects in CTCF- 
RNA binding, CTCF clustering, or both, since 
CTCF clustering and RNA binding are the two 
coordinated, RBRi-dependent processes. A model 
proposed that RNA-based self-association/cluster
ing of CTCF makes it a more efficient boundary to 
cohesin-mediated extrusion [98]. In another study, 
Ryu et al. demonstrated phase separation of cohe
sin holocomplex to be dependent on the presence 
of long DNA (exceeding ~3kb), which also occurs 
independent of cohesin ATPase activity [97]. 
Cohesin/DNA condensation may modulate loop 
extrusion by forming a more stabilized structure 
at loop anchors, which awaits further investigation 
[97]. Furthermore, a recent study performed in 
human ESCs suggested a role of phase separation 
in ensuring insulation at about 20% of TAD 
boundaries [101]. These TAD boundaries gener
ally display a lack of CTCF anchors, a high rate of 
transcription and spatial clustering, and an enrich
ment in housekeeping genes common to diverse 
cell types [101]. These observations together 
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indicate that multivalent interaction and conden
sation of biomolecules (including classic loop 
extruding proteins and other factors) may modu
late the loop extrusion process and shape the land
scape of TADs and boundaries.

Transcription factors (TFs), chromatin modi
fiers, and cofactors often harbor IDRs, which can 
induce phase separation [58–62]. A model has 
been proposed that condensation and LLPS of 
transcriptional (co)regulator serve as a critical 
mechanism for forming and/or enhancing long- 
range chromatin looping and contacts [50,55–57]. 
In the next section, we will further discuss about 
recent advances in this area.

Finally, RNA represents another prominent 
class of contributing factors for 3D genome orga
nization. RNA molecules such as those with N(6)- 
methyladenosine (m6A) modification [102]; 
a wide variety of RNA-binding, processing, and 
splicing factors [81,103–107]; and m6A readers 
[108] can undergo phase separation, which are 
not discussed in this focused review, and readers 
shall refer to other articles [71,104,109–112].

IDP-/IDR-dependent and phase 
separation-driven chromatin looping

Recently, in-depth Hi-C/Micro-C mapping studies 
have demonstrated the existence of diverse classes 
of chromatin loops, which at least include cohesin/ 
CTCF loops, long-range promoter–enhancer (E– 
P) loops, promoter–promoter (P–P) loops, and 
polycomb-associated contacts [32–36,113]. 
Although loop calling often relies on data quality, 
sequencing depth, and calling algorithm, Micro-C 
appears to be an approach more suitable for map
ping fine-scale 3D structures such as E–P and P–P 
loops [35,36]—as shown in a recent study of 
mouse ESCs, many more of fine loops (~20,000 
E–P loops and ~7,000 P–P loops) were called out, 
with a median size of ~100 kb [36]. As pointed out 
by Hsieh et al. [36], loops really refer to focal 
enrichments in contact frequency between a pair 
of genomic loci based on Hi-C/Micro-C maps; 
except those extrusion-driven cohesin/CTCF 
loops, the E–P, P–P, and polycomb-associated 
loops shall be more appropriately termed as inter
actions or contacts, as they may occur without 
actual looping [35,36]. Here, loop is a more freely 

used term to echo a textbook model of E– 
P looping [114], in a hope to make this review 
accessible to the general audience.

Distal regulatory elements such as enhancers 
play crucial roles in controlling gene transcription 
in a tissue- and cell type-specific manner. How 
exactly distal enhancers contribute to target gene 
expression has been a topic of intense investiga
tion. In the classic E–P looping model, a tethering 
factor transiently brings promoter and enhancer 
into close proximity, thereby enhancing frequency 
of contacts between the two [114]. Recent studies 
have demonstrated that E–P loops/contacts and 
cohesin/CTCF loops exhibit quite diverse charac
teristics [32–36,113]. First, unlike cohesin/CTCF 
loops (usually ~several to over ten thousand in 
number), which are globally lost upon cohesin 
deletion [32–34], E–P loops are largely insensitive 
to acute depletion (3 hours) of CTCF or cohesin, 
pointing to a loop extrusion-independent mechan
ism for E–P loop formation or maintenance [36]. 
In agreement, an independent study also observed 
that a subpopulation of loops, which are frequently 
anchored at superenhancers, was not affected by 
cohesin deletion [34]. Second, the strength of E–P 
loops is positively correlated with the gene expres
sion levels, supporting an involvement of tran
scriptional regulation; meanwhile, cohesin loops 
do not show such correlation [36]. Furthermore, 
overall strength of cohesin/CTCF loops is stronger 
than that of E–P loops [36], but acute disruption 
of the former only caused very mild transcrip
tomic changes, indicating that cohesin/CTCF 
loops serve more as ‘structural loops’ [34,36]. 
Also, note that, compared to acute deletion, long- 
term loss of cohesin/CTCF has a far more dra
matic effect on the transcriptome, with hundreds 
to thousands of genes showing expression change 
[32,33,36,98,113,115]. Thus, E–P loops may only 
temporarily sustain the gene expression program 
in the absence of structural loops [36]. In agree
ment with this notion, numerous studies have 
previously demonstrated that genome editing of 
specific CTCF-bound TAD boundaries, or manip
ulation of specific cohesin/CTCF loops, can signif
icantly impact E–P contacts and expression of the 
nearby genes [116–118].

The presence of IDPs is a feature common to all 
organisms (including bacteria, archaea, and 
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eukarya), and the abundance of disordered protein 
sequences increases proportionally with complex
ity of the organism, with approximately 52–67% of 
eukaryotic proteins carrying IDRs longer than 30 
amino acids [61,119]. Unlike a ‘lock-and-key’ 
model, which explains interaction of highly struc
tured protein domains, IDRs rely on weak, multi
valent interactions to form phase-separated 
condensates [58–62]. Many TFs and (co)regulators 
harbor IDRs and undergo LLPS [58–62]. Next, we 
will discuss about current understanding as of how 
the LLPS ability of gene/chromatin-regulatory fac
tors contributes to chromatin looping.

(1) IDR-containing oncoproteins such as 
NUP98-HOXA9, EWS-FLI, and ER-alpha

IDPs/IDRs are frequently involved in cancer- 
associated mutations such as aberrant fusion, sug
gesting a common oncogenic mechanism [23,63]. 
For example, NUP98-HOXA9 (Figure 1b), 
a chimera generated by fusion between the DNA- 
binding domain of HOXA9 (a homeodomain- 
containing TF) and the FG-repeats-containing seg
ment of NUP98, is associated with development of 
leukemias. The FG-repeats sequence, or IDR, of 
NUP98 has a potent capability to induce phase 
separation in vitro [82,83,120–122]. In cells, the 
NUP98-HOXA9 oncoproteins also display various 
features highly consistent with LLPS [82,121,122]. 
Similar LLPS characteristics were found with other 
leukemia-associated NUP98 onco-fusions such as 
NUP98-PRRX1, NUP98-KDM5A, and NUP98- 
NSD1 [121–123]. By mutating the IDR of NUP98- 
HOXA9 (Phe-Gly repeats) to a LLPS-incompetent 
sequence (Ser-Gly repeats) or by decreasing the FG 
repeat valency, Ahn et al. found that the LLPS- 
forming capability of NUP98-HOXA9 is essential 
for establishing the super-enhancer-like binding 
pattern seen with this onco-TF, is required for 
promoting CTCF-independent E-P looping among 
cognate sites bound by NUP98-HOXA9 (such as 
cis-regulatory elements of the PBX3, HOXA and 
HOXB proto-oncogenes), and is also required for 
proto-oncogene activation and leukemogenesis 
[82]. An artificial chimera FUS-HOXA9, which 
was created by replacing the NUP98 IDR with 
a LLPS-competent IDR of FUS (a Tyr-Ser-rich 
sequence [81]), largely recapitulated the genome- 

regulatory effects of NUP98-HOXA9, such as 
super-enhancer-like binding, proto-oncogene acti
vation, and leukemic induction [82].

Such a role of TF LLPS in enhancing loop for
mation can potentially be generalized to other 
cancer-related chimeras that display features simi
lar to NUP98-HOXA9 [82] (Figure 1b). Indeed, 
EWS-FLI, a hallmark fusion of Ewing’s sarcoma (a 
very aggressive pediatric bone cancer), also con
tains a LLPS-inducing IDR from EWS (a Try-Ser- 
rich sequence [81]) and a DNA-binding domain 
from FLI, an ETS family TF. Bouley et al. showed 
that the LLPS-inducing IDR of EWS confers 
a phase-transition property to EWS-FLI, leading 
to genomic retargeting of EWS-FLI-associated 
chromatin-remodeling complex (i.e. the BAF com
plex) and induction of an oncogenic gene- 
expression program [124]; also, fusing a minimal 
LLPS-inducing IDR sequence to FLI was sufficient 
to recapitulate the EWS-FLI-related activities 
[124]. A more recent study further reported that 
EWS-FLI induces looping [125], reminiscent of 
what was observed with NUP98-HOXA9 [82]. 
Specifically, new DNA loops are formed with 
their anchors associated with binding of EWS/ 
FLI and not CTCF [125]; in addition, EWS/FLI 
binds to the GGAA-rich motifs in the genome of 
Ewing’s sarcoma, leading to new enhancer forma
tion, A-type compartmentalization, and target 
gene upregulation [125].

LLPS of IDP can significantly influence the 
compartmentalization and biological function of 
interacting partners, as previously proposed in 
a scaffold–client model [65,126]. In this model, 
LLPS of the scaffold protein establishes the struc
ture of condensates, whereas other components, 
referred to as clients, are passively recruited into 
condensates. In such multi-component conden
sates (including scaffold and client), a quite diverse 
set of protein–protein, protein–DNA, protein– 
RNA, and RNA–RNA interactions can be estab
lished, leading to a coordinated regulation of 
enhancer/promoter activation, chromatin remo
deling and looping, and gene transcription. For 
example, Nair et al. showed that acute 17β- 
estradiol-dependent activation of enhancers in 
the MCF7 breast cancer cells is featured with the 
assembly of an enhancer RNA (eRNA)–dependent 
ribonucleoprotein (eRNP) complex that displays 
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properties of phase-separated condensates; such 
condensates are composed of a so-called 
‘MegaTrans’ complex formed by a set of TFs and 
coactivators (such as ER-alpha, FOXA1, GATA3, 
p300, and mediator) [127], eRNA, and condensin 
[128]. Concurrent with acute stimulation of 
enhancers, spatial proximity of these enhancers 
was observed [128]. IDRs exist in many 
‘MegaTrans’ components such as ER-alpha and 
GATA3, which indeed form liquid droplets 
in vivo and in cells [128]. A previous study has 
also reported co-mixing and condensation of ER- 
alpha and the IDR of MED1, a mediator compo
nent of ‘MegaTrans’ [129]. Based on these obser
vations, a model was proposed that biomolecular 
condensates of TFs and coactivators promote for
mation of ‘mega-loops’ among target gene enhan
cers [128]. Furthermore, BRD4-NUT, the midline 
carcinoma-associated oncoprotein, also establishes 
sizable nuclear puncta or condensates, together 
with coactivators (such as p300) and acetylated 
chromatin [91–94], in a manner consistent with 
the scaffold–client model; in addition, BRD4-NUT 
condensates appear to serve the hub for promoting 
long-range intra-chromosomal and inter- 
chromosomal interactions among regions targeted 
by BRD4-NUT [95]. It merits more thorough 
investigation whether and how a broader range 
of oncoproteins use IDR/LLPS-driven mechanisms 
to orchestrate the re-distribution of gene/chroma
tin-regulatory factors, generation of aberrant long- 
range chromatin loops/contacts, and deregulation 
of target gene expression, leading to oncogenesis.

(2) IDR-containing tumor suppressors UTX and 
UTY

In addition to oncoproteins, IDR and phase 
separation also regulate the function of tumor 
suppressors. Recently, Shi et al. reported that an 
IDR within UTX (also known as KDM6A) forms 
phase-separated liquid condensates [130]. UTX 
acts as a H3K27-specific demethylase, and inter
estingly, loss-of-function mutation at the UTX 
IDR is recurrent in human cancers, indicating 
a role in tumor suppression [130]. By employing 
a set of IDR deletion, mutagenesis, and replace
ment strategies, the researchers elegantly demon
strated a critical role for UTX IDR and phase 

separation in potentiating its chromatin modula
tion and tumor suppression functions [130]. 
Besides the intrinsic H3K27 demethylase activity, 
UTX can additionally recruit the H3K4 methyl
transferase, MLL4 (also known as KMT2D), into 
the same condensates where the UTX-MLL4 com
plex removes H3K27me3 and induces H3K4 
methylation. Moreover, high-order chromatin 
interactions were established by UTX, a process 
dependent on its IDR and condensation-forming 
property – here, Hi-C followed by chromatin 
immunoprecipitation (HiChIP) for H3K4me3 
and H3K27ac detected that loss-of-function muta
tion of the UTX IDR caused a partial disruption of 
those long-range E–P looping patterns normally 
seen in WT cells, which was also correlated with 
changes in gene expression [130].

UTX represents one of a few tumor suppressors 
known to escape X inactivation and contribute 
substantially to a higher rate of cancer susceptibil
ity seen with the male than the female [131]. The 
homolog of UTX on the Y chromosome is UTY 
(also known as KDM6C). Relative to UTX, male- 
specific UTY exhibited a weaker tumor- 
suppressive activity in the leukemia models [130]. 
While deletion of the UTY IDR reduced its tumor- 
suppressive activity, replacing it with the IDR of 
UTX significantly enhanced UTY’s activity; con
versely, replacing the IDR of UTX with that of 
UTY significantly reduced UTX’s tumor- 
suppressive activity, pointing out an important 
role for IDR [130]. Interestingly, the UTY IDR 
actually exhibits a stronger phase-separation cap
ability than the UTX IDR, consistent with a fact 
that the former contains more aromatic residues 
and more abundant blocks of oppositely charged 
residues [130]. Compared with condensates of the 
UTX IDR, those of the UTY IDR were less liquid- 
like, displayed the slower dynamics, and adopted 
a more solid-like material state [130]. In addition, 
certain cancer-associated somatic mutations target 
the UTX IDR and condensates of such UTX-IDR 
mutants were more ‘hardened’ and less fluid than 
WT controls [130]. In breast cancer cells, evidence 
also exists to show that the ‘MegaTrans’ complex 
can progressively transition from a fluid to a more 
viscous solid state, in response to long-term treat
ment of ER-alpha ligand [129]. Thus, a balanced 
condensation ability and appropriate material state 
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(such as a metastable liquid state versus a solid/ 
gel-like state) can regulate physiological activities 
of gene/chromatin regulators.

(3) The pluripotency factor OCT4

It is generally thought that TADs are stable across 
diverse cell types and conserved across species [3]; 
however, TAD reorganization occurs during the 
transition of cellular states, such as somatic cell 
reprogramming [132]. Induced reprogramming of 
mouse embryonic fibroblasts (MEFs) to pluripo
tent stem cells (PSCs) is associated with significant 
changes in TAD boundaries and size, leading to 
TAD shift, fusion, or separation, which is corre
lated with changes in gene expression and cellular 
identity [132]. For example, merging of the TAD 
containing Dppa5a, a pluripotency gene, with 
a neighboring TAD was observed during repro
gramming [132]. In order to dissect the role for 
TAD reorganization in reprogramming, Wang 
et al. used a dCas9-based chemical-inducible link
ing approach to artificially fuse the above two 
TADs, which are separated by a CTCF-bound 
insulator in MEFs [132]. Such induced merging 
of TADs led to decreased CTCF binding at the 
insulator and early activation of Dppa5a expres
sion during reprogramming; compared to con
trols, these engineered MEFs also showed 
enhanced efficiency of reprogramming [132]. 
These effects can be recapitulated by deletion of 
the CTCF-bound insulator in MEFs [132]. To 
further dissect the mechanism underlying TAD 
reorganization, the authors turned to OCT4, 
a critical reprogramming TF, and mapped OCT4- 
associated loops by HiChIP [132]. OCT4 loop 
clusters (including both E-P and P-P loops) 
showed a positive correlation with TAD reorgani
zation – there was an overall increase of OCT4 
loops at TAD boundary sites that disappeared 
during cell transitioning to PSCs; conversely, 
there was an overall decrease of OCT4 loops at 
those boundary sites newly formed in PSCs [132]. 
In both boundary groups, either lost or newly 
formed in PSCs compared to a pre-PSC state, 
overall CTCF binding was enhanced upon acute 
depletion of OCT4 in PSCs, suggesting antagon
ism between OCT4-associated loops and CTCF- 
associated structural loops [132]. This observation 

is somewhat reminiscent of what was seen with 
LLPS-competent NUP98-HOXA9, which led to 
generation of new loops between binding sites 
and concurrent loss of nearby loops anchored by 
CTCF (for example, see the MAP2K5 locus [82]).

OCT4 (Figure 1c) harbors LLPS-inducing IDRs 
[129,132]. It can phase separate in vitro and form 
nuclear droplets in PSCs [129,132]. Combined 
analyses of DNA fluorescence in situ hybridization 
(FISH) and immunofluorescence (IF) showed co- 
localization between OCT4 condensates and 
OCT4 loop cluster-targeted genomic regions 
[132]. Importantly, disruption of OCT4 phase 
separation via independent approaches (either 
substitution of an acidic-residue-rich IDR with 
alanine or a small three-amino-acid deletion 
within a C-terminal IDR) significantly attenuated 
the TAD reorganization normally observed upon 
ectopic expression of WT OCT4 in MEFs; also, 
these phase-separation-defective mutations attenu
ated the efficiency of reprogramming by OCT4 
[132]. Furthermore, fusing the phase-separation- 
incompetent OCT4 with an independent LLPS- 
inducing IDR from FUS restored OCT4 LLPS 
and also largely restored the TAD reorganization 
and reprogramming capabilities [132].

(4) Polycomb proteins

Polycomb repressive complexes 1 and 2 (PRC1 
and PRC2) represent a group of gene silencing- 
associated chromatin modifiers [133–135]. There 
exist canonical and noncanonical PRC1 and PRC2, 
which differ in complex composition and biologi
cal function; for the details, readers shall refer to 
other reviews [133–135]. PRC1 and PRC2 can 
form condensates [136–144]. In particular, IDRs 
harbored within CBX2 and PHC1, the two subu
nits of canonical PRC1, were reported to drive 
LLPS in vitro; in animal models, compaction of 
PRC1 target chromatin also exhibited an IDR 
dependency [136–144]. Evidence based on Hi-C 
and other mapping methods further showed the 
existence of polycomb-associated loops including 
P–P and E–P interactions [36,145–150]. PRC1/2 is 
also involved in the formation and/or maintenance 
of so-called polycomb-associated domains (PADs), 
which refer to compact, self-associating domains 
of polycomb-targeted chromatin [145,146,151– 
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154]. Polycomb-associated long-range E– 
P interaction or PAD formation was often found 
to be dependent on PRC1, and not H3K27me3 
[153,155] or CTCF [154]. Thus, LLPS of PRCs is 
potentially involved in the regulation of the 3D 
chromatin structure, but further investigation is 
merited to dissect the molecular detail.

Concluding remarks

As discussed above, emerging evidence shows that 
IDR-containing gene/chromatin-regulatory factors 
form condensates and are involved in generation 
of new chromatin loops, a process dependent on 
IDR and its LLPS-forming ability (as seen with 
NUP98-HOXA9 [82] and UTX [130]). 
Additionally, OCT4-associated loops were shown 
to have a significant impact on reorganization of 
higher-order 3D structures such as TADs, and this 
process also relies on the IDR- and LLPS-inducing 
capability of OCT4 [132]. Numerous TFs (such as 
cMyc and ER-alpha [129,156]) and coactivators 
(many of which are chromatin modifiers, remode
lers, or readers such as p300 [157], ENL [158], and 
BRD4 [159,160]), as well as mediator [160] and 
RNA polymerase II [103,161–163], all contain 
IDRs that can induce LLPS in vitro and mediate 
condensate formation in vivo. Furthermore, classic 
heterochromatic factors, such as HP1-alpha 
[84,85], PRC1/2 [138,139,141], and MeCP2 [164– 
166], also contain IDRs and undergo LLPS. Thus, 
it is tempting to speculate that the contribution of 
phase separation and IDPs to the 3D chromatin 
structure (re)organization is a widespread phe
nomenon occurring at all chromatin compart
ments/domains and across different genomic 
scales [50,55–57], which awaits additional studies.

Conceivably, the IDP-/LLPS-associated chroma
tin loops and the CTCF-/cohesin-formed structural 
TADs/loops operate independently and can cross- 
talk as well, in either a cooperative or antagonistic 
manner. How exactly these two 3D structure classes 
influence one another seems rather complex. On 
the one hand, it has been long postulated that 
CTCF-/cohesin-mediated structural TADs/loops 
can constrain the communication between a E– 
P pair separated by CTCF, which has gained much 
support from genetic manipulation studies of spe
cific CTCF sites/loops [116,117]; meanwhile, CTCF 

binding sites, either within TADs or close to pro
moters, can also stabilize or directly promote E– 
P and P–P contacts, potentially contributing to gene 
activation [113,115]. In support of the latter notion, 
a recent work further showed that CTCF-mediated 
structural loops provide a topological framework 
for the formation of transcriptional condensates 
by TFs, coactivators, and RNA polymerase II 
[167]. However, acute disruption of CTCF/cohesin 
does not significantly affect gene expression at 
a global level [32–34] nor does it immediately affect 
a vast majority of E–P and P–P loops, leading to 
postulation of a ‘time-buffering’ model [36]. Also, 
about 20% of E–P loops and one third of P–P loops 
can go across TAD boundaries and still retain 
a comparable level of contact intensity to those 
equidistant loops located within the same TADs, 
which then seems to argue against the 
constraint model as to E-P communication [36]. 
On the other hand, IDP-/LLPS-associated loops 
can have a local effect on structural loops. For 
instance, loop clusters associated with phase- 
separated OCT4 seem to antagonize CTCF binding 
and local TADs during the somatic cell reprogram
ming model [132]. Another example is that ectopic 
expression of LLPS-competent NUP98-HOXA9 
promotes new looping between its binding sites at 
the MAP2K5 locus, concurrent with loss of a nearby 
CTCF loop [82]. Furthermore, lower-order 3D 
structures such as OCT4-associated loops can have 
a significant impact on higher-order structures such 
as TADs [132]. Whether such effects can be gener
alized to other IDPs remains unclear, and addi
tional studies are warranted to specify rather 
complex crosstalk between structural loops and E– 
P loops.

Finally, it is worth mentioning that some pre
vious studies of phase separation relied heavily on 
non-physiological over-expression and artificial 
systems, which represents a concern 
[65,168,169]. New tools for more definitely deter
mining phase separation in vivo need to be devel
oped. Also, how exactly the E–P contact/looping 
regulates gene expression remains to be more 
clearly determined in the future [114]. For 
instance, a live cell imaging-based study of Sox2 
in ESCs showed that stable and direct pairing of 
the Sox2 promoter with enhancer is unlikely to 
explain transcriptional activation of Sox2 in real 
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time [170]. Furthermore, olfactory receptor genes 
are known to establish long-range interactions 
(including inter-chromosomal ones) and form 
a multi-chromosomal hub so that all but one 
olfactory receptor gene is repressed in olfactory 
sensory neurons [171]; however, the underlying 
mechanism remains elusive. All the aforemen
tioned outstanding questions await further 
investigation.
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