REVIEWS

Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers

Ping Chi**, C. David Allis* and Gang Greg Wang*

Abstract | Post-translational modification of histones provides an important regulatory platform for processes such as gene transcription and DNA damage repair. It has become increasingly apparent that the misregulation of histone modification, which is caused by the deregulation of factors that mediate the modification installation, removal and/or interpretation, actively contributes to human cancer. In this Review, we summarize recent advances in understanding the interpretation of certain histone methylations by plant homeodomain finger-containing proteins, and how misreading, miswriting and mis-erasing of histone methylation marks can be associated with oncogenesis and progression. These observations provide us with a greater mechanistic understanding of epigenetic alterations in human cancers and might also help direct new therapeutic interventions in the future.

Chromatin

The composition of DNA and proteins (mainly histones) that form chromosomes. It is organized as repeating subunits of nucleosomal core particles that comprise approximately 147 base pairs of DNA wrapped around a histone octamer containing two copies each of histones H2A, H2B, H3 and H4.

*Laboratory of Chromatin Biology and Epigenetics, 1230 York Avenue, The Rockefeller University, BOX 78, New York, NY 10065, USA.

¹Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.

Correspondence to C.D.A. and G.G.W. e-mails:
elliscd@rockefeller.edu; awana@rockefeller.edu

doi:10.1038/nrc2876

Modulation of chromatin through covalent histone modification is one fundamental way of regulating DNA accessibility during processes such as gene transcription, DNA replication and DNA damage repair. According to the 'histone code hypothesis' (BOX 1), the biological outcome of histone modifications is manifested by direct physical modulation of nucleosomal structure or by providing a signalling platform to recruit downstream 'reader' or 'effector' proteins^{1,2}. Emerging evidence suggests that both genetic alterations and epigenetic aberrations contribute to the initiation and progression of human cancers³. For example, aberrant DNA methylation is a common mechanism used by tumour cells to silence tumour suppressor genes4. In this Review, we focus on the recent advances that link oncogenesis to histone methylation events, with those occurring at histone H3 lysine 4 (H3K4) and H3 lysine 27 (H3K27) as paradigmatic examples (TABLE 1). We propose that epigenetic alterations involving histone modifications lead to the misregulation of gene expression and consequently tumorigenesis.

Methylation of histones can occur at both lysine and arginine resides and is now appreciated as a reversible process. Its homeostasis is mediated by two antagonizing groups of enzymes, histone methylation 'writers' and 'erasers', which install and remove histone methylation marks, respectively, in a site-specific manner^{1,5}. For example, H3K4 methylation is established by the SET1 and mixed lineage leukaemia (MLL) family of histone methyltransferases (HMTs)⁵ (FIG. 1a), and removed by

the lysine-specific histone demethylase 1 (LSD1) and jumonji AT-rich interactive domain 1 (JARID1) family of histone demethylases (HDMs)⁶ (TABLE 1).

For histone H3, methylation has been observed at multiple lysine sites, including H3K4, K9, K27, K36 and K79, and the addition of up to three methyl groups at each lysine produces a total of four methyl states: unmethylated, monomethylated, dimethylated or trimethylated. These histone methylation states exhibit a distinct distribution pattern in the mammalian genome⁷. H3K4 trimethylation (H3K4me3) is strongly associated with transcriptional competence and activation, with the highest levels observed near transcriptional start sites of highly expressed genes, whereas H3K27 trimethylation (H3K27me3) is frequently associated with gene silencing, especially the repression of unwanted differentiation programmes during lineage specification⁷⁻⁹. The distribution patterns of H3K4me3, H3K27me3 and their associated histone marks underlie the diversity of cellular states for pluripotency and lineage differentiation. For example, in embryonic stem cells, active and repressive (bivalent) histone modifications coexist on developmentally crucial genes. By contrast, monovalent active or repressive histone marks are often found on these genes in differentiated cell lineages^{8,9}. The bivalent chromatin state has been suggested as a mechanism for retaining chromatin and cellular plasticity at early stages of development^{8,9}. As epigenetics and histone modification have crucial roles in cell fate determination, it has been proposed that they

At a glance

- Post-translational modifications of histones introduce meaningful variations into chromatin and provide a regulatory platform for controlling and/or fine-tuning many important DNA-templated processes, including gene transcription, the repair of DNA damage and DNA replication.
- Histone modifications, together with factors responsible for adding ('writing'), interpreting ('reading') and removing ('erasing') histone modifications, regulate specific and distinct functional outputs of our genomes, which constitute the basis of the 'histone code hypothesis'.
- As recent evidence starts to link the miswriting, misinterpretation and mis-erasing of
 histone modifications to oncogenesis, we further propose that misregulation of the
 histone code leads to deregulated gene expression and perturbation of cellular
 identity, and is therefore a major contributor to cancer initiation, progression and/or
 metastasis.
- Mixed lineage leukaemia (MLL) and enhancer of zeste 2 (EZH2) catalyse the addition of methylation of histone H3 lysine 4 (H3K4) and H3 lysine 27 (H3K27), respectively, which are arguably two of the most important histone methylation marks. MLL rearrangement and deregulation of EZH2 are among the most common mutations in leukaemia and solid tumours, respectively.
- Several plant homoedomain (PHD) finger-containing proteins have recently been identified as reading factors of trimethylation of H3K4 (H3K4me3). Misinterpretation of H3K4me3 by leukaemia-associated translocations of PHD finger factors (NUP98–JARID1A or NUP98–PHF23) is crucial for the induction of myeloid leukaemia; somatic mutations of ING1, a PHD finger factor, interfere with the reading of H3K4me3 and associate with the development of oesophageal squamous cell carcinoma, head and neck squamous cell carcinoma and melanoma.
- Deregulation or mutations of the recently identified H3K4- or H3K27-specific histone demethylases have been observed in solid tumours. However, their involvement in cancer development and underlying mechanisms are largely unclear.

Epigenetic

Refers to the study of mechanisms underlying inheritable phenotypic variations caused by DNA sequence-independent alterations. This term has been more loosely used to describe alterations caused by a change of chromatin structure, which often have unclear heritability.

DNA methylation

A type of chemical modification of DNA that involves the addition of a methyl group to the number 5 carbon of the cytosine pyrimidine ring.

Histone methylation

A chemical modification involving the addition of one, two or three methyl groups on the lysine or arginine residues in a histone protein.

General transcription machinery

A large protein complex including RNA polymerase II and general transcription factors such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH.

may help establish tumour-initiating cell populations in early tumorigenesis¹⁰. Indeed, changes in global histone modification patterns have been observed in several types of cancer, and these studies have provided us with the first glimpse of how the epigenetic landscape and cellular context might be altered in tumorigenesis^{11,12}.

Histone methylation: a chromatin index

One important issue in chromatin biology and epigenetics is how the pattern of a potential histone code or epigenetic code (BOX 1) is translated into meaningful biological consequences, and the identification of factors that specifically recognize or read histone modifications has greatly contributed to our mechanistic understanding. A recent breakthrough was the discovery of a specialized group of protein modules, plant homeodomain (PHD) fingers (BOX 2), which function as the specific reading motif for trimethylated and dimethylated H3K4 (H3K4me3/2), with H3K4me3 as the preferred ligand 13-16 (TABLE 2). Although many PHD finger motifs are encoded by the human genome, only a subset contains the crucial hydrophobic and aromatic residues that can form a specialized structural pocket to accommodate the H3K4me3 side chain⁵ (BOX 2). These PHD histone modification reading modules have been reviewed in detail elsewhere^{5,17,18}. Here, we focus only on how these histone modification reading factors are involved in normal cellular processes, such as transcriptional regulation, as well as in oncogenesis.

Around 15 PHD finger-containing readers for H3K4me3/2 have been experimentally confirmed (TABLE 2), and these include an RNA polymerase IIassociated general transcription machinery component TFIID subunit 3 (also known as TAF3), a V(D)J recombinase RAG2, and several key chromatin-modifying and remodelling factors. The H3K4me3 mark could be a crucial chromatin 'index' mechanism, allowing specific genomic regions to be readily recognized by their downstream readers and/or associated effectors. For example, the targeting of TFIID to H3K4me3 at promoters has been suggested to help anchor and/or recruit TFIID and associated machinery for active transcriptional initiation^{19,20} (FIG. 2a). The recognition of H3K4me3 by the RAG2 PHD finger at V(D)J gene segments is crucial for efficient V(D)J recombination during B and T cell development and maturation, and deleterious germline mutations that abrogate such recognition of H3K4me3 lead to severe immunodeficiency syndromes²¹ (FIG. 2b). Now, emerging evidence also reveals that deregulation in the reading of H3K4me3 contributes to cellular transformation and tumorigenesis, for example, in acute myeloid leukaemia that is induced by chromosomal translocation of the H3K4me3-reading PHD finger of PHF23 or JARID1A (also known as KDM5A and RBBP2)²² (TABLE 1). Furthermore, many enzymes that mediate the writing and erasing of histone methylation are strongly associated with oncogenesis (TABLE 1). Notably, some histone methylation writers and erasers also contain the methyl-reading module (for example, MLL and JARID1A (TABLES 1,2)), indicating potential coordination between the reading, writing and erasing events of histone modification.

Demethylation of histones and beyond

Although histone modification writers and erasers were originally identified as enzymes that modify histones, recent evidence suggests that they may also target nonhistone proteins, which might confound attempts to infer the function of histone modifications. For example, LSD1 not only targets its canonical substrate, histone H3, but also demethylates the tumour suppressor p53 at lysine 370 and represses p53 activities^{23,24}. Similarly, the histone methyltransferases G9a, SET7 and SET9 induce the methylation of many non-histone proteins^{24,25}. To our knowledge, none of the histone methyltransferases and demethylases listed in TABLE 1 has been shown to function on non-histone substrates; however, this remains a formal possibility. Bearing in mind these potential caveats, in the following sections, we use mutations affecting H3K4me3-reading PHD finger readers, and mutations affecting chemical modification of H3K4me3 and H3K27me3, as instructive examples to discuss recent evidence that links the miswriting, misinterpretation and mis-erasing of the histone code to oncogenesis.

Histone methylation miswritten in cancer

The establishment of an appropriate pattern of histone methylation is not only crucial for normal development and differentiation, but is also intimately associated with tumour initiation and development (TABLE 1).

V(D)J recombinase

An enzyme that carries out V(D)J recombination, a specialized DNA rearrangement that randomly selects and assembles the Variable (V), Diversity (D) and Joining (J) gene fragments of immunoglobulin (Ig)- or T cell receptor (TCR)-encoding loci, thus generating a repertoire of Ig or TCR molecules in lymphocytes and a diverse immune response.

Gene rearrangement

Alteration of chromosomes such as a chromosomal translocation that causes changes in gene structural composition or organization. It can occur as a normal developmental event such as during V(D)J recombination, but is more commonly found in cancer cells as chromosomal abnormalities.

Since the discovery of the first transcription-related histone-modifying enzyme, <u>GCN5</u> (a histone acetyltransferase (HAT)), in 1996 (REF. 26), many new enzymatic activities have been discovered. Some of these genes already have well-established roles in oncogenesis. Conversely, recent genomic studies have identified new recurrent mutations in some of these enzymes in human cancer, implicating a potential causal role in oncogenesis.

MLL gene rearrangement in leukaemia. The MLL (also known as ALL-1 and KMT2A) gene was initially identified through its involvement in recurrent translocations of chromosomal band 11q23 in human myeloid and lymphoid leukaemias27, and was later shown to encode a major H3K4-specific HMT enzyme^{28,29}. MLL forms a large macromolecular nuclear complex with the core complex components (WDR5, RBBP5 and ASL2) and induces H3K4me3 for efficient transcription^{5,28,30} (FIG. 1a). Other MLL-associated factors, menin (also known as MEN1) and LEDGF, tether the MLL complex to appropriate targets³¹ (FIG. 1a). MLL gene rearrangement is one of the most common chromosomal abnormalities in human leukaemia, accounting for around 80% of infant leukaemia and 5-10% of adult acute myeloid leukaemia (AML) or lymphoid leukaemia^{27,32}.

Box 1 | The histone code hypothesis

The histone code hypothesis, initially proposed by Allis and colleagues^{1,2}, refers to an epigenetic marking system using different combinations of histone modification patterns to regulate specific and distinct functional outputs of eukaryotic genomes.

The histone code hypothesis in gene regulation and development

The histone code hypothesis proposes several layers of regulation in the interpretation of the genome. First, the establishment of homeostasis of a combinatorial pattern of histone modification — the histone code — in a given cellular and developmental context is brought about by a series of 'writing' and 'erasing' events carried out by histone-modifying enzymes. Here, the writer of histone modification refers to an enzyme (for example, a histone methyltranferase) that catalyses a chemical modification of histones in a residue-specific manner, and the eraser of histone modification refers to an enzyme (for example, a histone demethylase) that removes a chemical modification from histones^{1,2,5}. Second, the specific interpretation or the 'reading' of the histone code; this is accomplished by reader or 'effector' proteins that specifically bind to a certain type or a combination of histone modification and translate the histone code into a meaningful biological outcome, whether transcriptional activation, silencing or other cellular responses^{1,2,5}. In addition to such a recruitment or trans mechanism, the manifestation of histone modification can be also achieved by direct physical modulation of chromatin structure or alteration of intra-nucleosomal and inter-nucleosomal contacts through steric or charge interaction (for example, neutralization of the positive charges of histones by acetylation of lysines)1-3. All these regulatory mechanisms function broadly to set up an epigenetic landscape that determines cell fate decision-making during embryogenesis and development9, and fine-tunes gene transcriptional output at a few gene loci during DNA damage repair¹⁴ or other DNA-templated contexts.

The histone code hypothesis extended to oncogenesis

In the contexts of tumorigenesis and cancer epigenetics, we further propose that alteration in the homeostasis between epigenetically regulated gene-on versus gene-off chromatin states leads to inappropriate expression or silencing of transcriptional programmes that consequently alter the states of cellular identity. In certain developmental cell lineages, these alterations lead to undesirable outcomes: proliferation versus senescence and/or differentiation during tumorigenesis.

The partial tandem duplication of MLL (MLL-PTD), the most frequent form of MLL rearrangement in AML^{32,33}, contains an in-frame duplication of *MLL* exon 4 to 11 (or exon 4 to 12) and retains the H3K4 HMT activity²⁷ (FIG. 1a). Dorrance et al.³⁴ have recently generated an MLL-PTD knock-in mouse model and found that MLL-PTD causes aberrant elevation of H3K4 dimethylation and histone acetylation of the HOXA gene cluster^{34,35} (FIG. 1a). Overexpression of Hox genes promotes leukaemia induction³⁶. Normally, the expression of HOXA genes such as *Hoxa9* is developmentally restricted: they are highly expressed in early haematopoietic precursors and silenced following differentiation³⁷ (FIG. 1a). In the MLL-PTD knock-in mice, increased histone methylation and acetylation correlates with a significant increase in the colony formation potentials of erythroid, myeloid and pluripotent haematopoietic progenitors in vitro, as well as a drastic increase in Hoxa9 expression among terminally differentiated blood cells (increased by ~100-250-fold) and unsorted haematopoietic tissues (by ~4-150-fold)34,35. However, these MLL-PTD knock-in mice fail to develop frank leukaemia, indicating that additional alterations are required for malignant transformation.

MLL fusions, a second type of MLL gene rearrangement, result in the deletion of a large carboxy terminal fragment, which includes the H3K4 HMT domain, and also the acquisition of additional transformation mechanisms provided by MLL fusion partners^{27,38} (FIG. 1b,c,d). More than 50 different MLL fusion partners have been identified in leukaemia^{27,38}. Although the leukaemogenic mechanisms underlying many rare MLL fusion forms remain poorly understood, recent studies have unveiled a common transformation pathway for the most frequent MLL fusion forms (FIG. 1b,c). Okada et al. first reported that the AF10 portion of MLL-AF10 (REF. 39) and CALM-AF10 (REF. 40) fusions directly recruits DOT1L (also known as KMT4), a histone methyltransferase that writes the methylation of histone H3 lysine 79 (H3K79me)³⁹ (FIG. 1b), a key event in MLL-AF10-driven leukaemogenesis. Similarly, the ENL component of the MLL-ENL fusion also directly associates with DOT1L, and subsequently drives leukaemogenesis⁴¹ (FIG. 1b). Aberrant induction of H3K79me was observed at leukaemia-promoting oncogenes (such as Hoxa9 (FIG. 1b)) in leukaemia cells transformed by the most common MLL fusion forms, including MLL-AF10 (REF. 39), MLL-ENL41,42, MLL-AF4 (REFS 43,44) and MLL-AF9 (REF. 45). Mutations of MLL-ENL⁴¹ or CALM-AF10⁴⁰ that disrupt the interaction with DOT1L abolish leukaemic transformation. DOT1L and H3K79me are associated with active transcription⁴⁶, especially at MLL fusion target loci39,43, thus providing a potential mechanism for the aberrant transcriptional activation found in leukaemia. DOT1L and by inference, H3K79me, are also involved in cell cycle progression⁴⁷, silencing of telomere-proximal genes⁴⁸ and regulation of Wnt-target genes⁴⁹. Recent biochemical studies have further revealed that DOT1L associates with many factors that are known MLL fusion partners, including AF10 (REFS 39,49–51), ENL41,49,51, AF9 (REFS 49-52), AF17 (REF. 49), AF4 (also known as MLLT2 and AFF1)41,49,50, AF5q31 (also known as

Table 1 Deregulation of H3K4me3 and H3K27me3 is associated with cancer development						
Category	Gene ID	Deregulation in human cancer	Refs			
H3K4me						
Writer	MLL	Rearrangement of MLL commonly found in myeloid and lymphoblastic leukaemia	27			
	MLL2	Somatic mutation of MLL2 found in renal cell carcinoma	99			
Reader	ING1, ING2, ING3, ING4 and ING5	Loss-of-function mutations of putative tumour suppressor genes <i>ING1</i> –5, including somatic mutation, allelic loss, downregulation of expression and aberrant cytoplasmic sequestration, associate with various solid tumors. A subset of <i>ING2</i> somatic mutations interferes with binding to H3K4me3 specifically	71–73			
	PHF23	Owing to chromosomal translocation, the H3K4me3-binding PHD finger of PHF23 is fused to NUP98 in myeloid leukaemia. It has been shown that H3K4me3 binding is crucial for leukaemogenesis induced by NUP98–PHF23 oncoproteins	22			
	PYGO2	PYGO2, a component of the β -catenin signalling pathway, is crucial for self-renewal of mammary progenitor cells. Pygo levels are high in malignant breast tumours and low in non-malignant breast cells	90,91			
Eraser	LSD1	LSD1, a component of NuRD–Mi-2 repressive complexes, demethylates H3K4me2/1 and suppresses the invasiveness and metastasis of breast cancer cells. LSD1 is downregulated in breast carcinoma tissues	94			
	JARID1A	Similar to PHF23, the PHD finger of JARID1A is fused to NUP98 in a subset of myeloid leukaemia, forming an oncoprotein NUP98–JARID1A. H3K4me3 binding by the JARID1A PHD finger is crucial for leukaemogenesis	22			
	JARID1B	Overexpression of JARID1B was found in advanced breast and prostate cancers	96,98			
	JARID1C	Recurrent inactivating mutation of \emph{JARID1C} was detected in around 3% of renal carcinoma	99			
	JHDM1B*	Upregulation of JHDM1B or a related gene JHDM1A is commonly found in retrovirus-induced rat T cell lymphomas	101–103			
H3K27me						
Writer	EZH2	Overexpression of EZH2 is frequently found in various solid tumours, including prostate, breast, colon, skin, and lung cancers. Recurrent inactivating mutations and haploinsufficiency of EZH2 are detected in around 10% of follicular lymphoma and 20% of diffuse large B cell lymphoma of germinal centre origin	56,65			
Eraser	JMJD3	Downregulation of JMJD3 was found in lung and liver cancers	105,106			
	UTX	Sporadic inactivating mutations of <i>UTX</i> were reported in a subset of multiple myeloma, oesophageal squamous cell carcinomas, renal cell carcinomas and other tumours	104			

EZH2, enhancer of zeste homolog 2; ING, inhibitor of growth; JARID1, jumonji AT-rich interactive domain 1; JHDM1B, jumonji C domain-containing histone demethylase 1B; JMJD3, jumonji domain containing 3; MLL, mixed lineage leukaemia; PHD, plant homeodomain; PHF23, PHD finger protein 23; Pygo, pygopus; UTX, ubiquitously transcribed tetratricopeptide repeat X chromosome.* JHDM1 factors exhibit dual demethylating activities towards H3K4me3 and H3K36me2 (REFS 101–103).

MCEF and AFF4)41 and LAF4 (REF. 41). AF10, AF17 and ENL (or AF9) were identified as stable components of DOT1L-containing complexes⁴⁹. One intriguing model is that DOT1L is responsible for aberrant transcription in many MLL fusion-induced leukaemias; however, this is complicated by the fact that DOT1L complexes are also linked to transcription elongation. Through a protein-protein interaction network, DOT1L-AF10-ENL complexes further associate with a transcription elongationpromoting complex that contains AF5q31, AF4, ELL1, ELL2 and ELL3 (also known MLL fusion partners), and the Pol II transcription elongation factor b (P-TEFb) kinase (which consists of CDK9, cyclin T1 and cyclin T2)41,53 (FIG. 1b,c). ENL and AF5q31 are shared components of these two complexes^{41,49,51,53}. In addition, two recent studies further demonstrate that MLL fusions involving components in this elongation complex — such

as MLL–AF4, MLL–ENL, MLL–AF9 and MLL–ELL1—all interact with AF5q31 and recruit P-TEFb transcription elongation complexes to promote the transcription of downstream targets such as Hox^{53,54} (FIG. 1c). Therefore, mechanisms underlying aberrant transactivation in MLL leukaemia have been linked to H3K79me and also transcription elongation.

Although the activities of the P-TEFb complexes during transcription are well established, the role of H3K79 methylation in transcription is less well understood. Is H3K79me as important as P-TEFb, or does DOT1L merely bridge MLL fusions (such as MLL–ENL and MLL–AF10) to P-TEFb elongation complexes (FIG. 1b)? Several lines of evidence suggest that H3K79me is crucial in leukaemia induction. First, replacing the AF10 fragment of MLL–AF10 with the wild-type, but not the catalytically inactive, form of DOT1L led to

Transcription elongation
Efficient transcription and
productive RNA processing
after RNA polymerase II (Pol II)
and associated factors have
escaped from abortive initiation,
a phenomenon in which Pol II
and transcription are halted at
promoter-proximal pause sites.

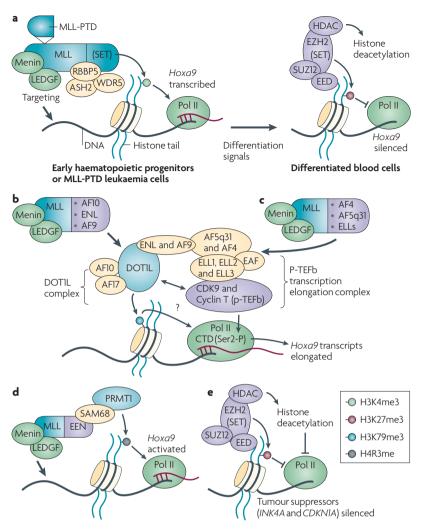


Figure 1| Miswriting of histone methylation is associated with cancer initiation and/or progression. Mixed lineage leukaemia (MLL)-containing complexes induce H3K4 trimethylation (H3K4me3) at Hox genes in early haematopoietic progenitor cells. After differentiation, a transition of chromatin state occurs at Hox, inducing its stable silencing. MLL-PTD, an MLL rearrangement form, causes increased H3K4 methylation and transcription of leukaemia-associated oncogenes, including Hoxa9 (REF. 35). For simplicity, only four of the eight histone tails are shown in each nucleosome (part a). MLL fusion proteins, commonly found in leukaemia, lose a large carboxy-terminal portion that includes the H3K4me3-'writing' methyltransferase SET domain, retain the chromatin-targeting property and also acquire aberrant transactivation mechanisms through MLL fusion partners. A subset of MLL fusions, MLL-AF10, MLL-ENL and MLL-AF9, directly interact with DOT1L through the MLL fusion partner and induce the methylation of H3K79 at Hoxa9 (part b). Some other MLL fusions, MLL-AF4, MLL-AF5q31 and MLL-ELL, interact with and recruit the P-TEFb transcription elongation complexes to Hoxa9 (part c). DOT1L complexes (DOT1L-AF10-AF17-ENL (or AF9)) associate with P-TEFb complexes through the shared component ENL. Another MLL fusion partner, EEN, recruits PRMT1 and induces the methylation of H4R3 at Hox (part d). Hyperphosphorylation (Ser2) of the C-terminal domain (CTD) of RNA polymerase II (RNA Pol II) CTD by the P-TEFb complex H3K79me3/2 and H4R3me are associated with either transcriptional elongation or initiation. Overexpression of enhancer of zeste homolog 2 (EZH2) in tumour cells induces the silencing of the tumour suppressor genes such as INK4A and CDKN1B. EZH2-mediated repression relies on its intrinsic H3K27me3/2 writing activities and also histone deacetylation induced by associated histone deacetylases (part e).

leukaemic transformation³⁹. Second, RNA interference (RNAi)-mediated inhibition of DOT1L significantly impaired MLL–AF4-induced transformation and the activation of Hox genes⁴³, despite intact association of MLL–AF4 with AF5q31 and the P-TEFb elongation complexes⁵³. In addition, DOT1L directly interacts with P-TEFb⁵⁴. Further investigations will be needed to examine the role of H3K79me during transcriptional activation and elongation in leukaemogenesis.

Another MLL fusion, MLL–EEN, recruits histone arginine methyltransferase PRMT1, and its methyltransferase activity towards histone H4 arginine 3 has been shown to be important for leukaemia transformation this also occurs through *Hoxa9* activation (FIG. 1d)). Taken together, miswriting of histone methylation marks often correlates with the aberrant transcription of oncogenes in patients with leukaemia harbouring *MLL* gene rearrangements.

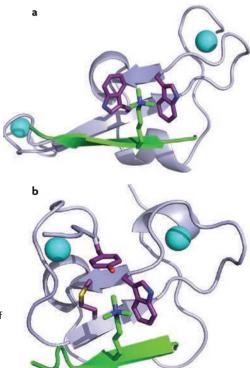
EZH2 overexpression and mutation in cancers. Enhancer of zeste homolog 2 (EZH2), an H3K27-specific methyltransferase, provides another connection between miswriting histone methylation marks and oncogenesis. EZH2 is frequently found overexpressed in various solid tumours, including prostate, breast, colon, skin and

lung cancer^{56,57} (TABLE 1). Suppression of EZH2 by RNAi significantly decreased tumour growth in breast and prostate tumour xenograft models^{58,59}. Furthermore, overexpression of EZH2 confers invasiveness to fibroblasts and immortalized benign mammary epithelial cells, and this effect is dependent on the H3K27 HMT activity of EZH2 (REFS 59-61). Mechanistically, the oncogenic function of EZH2 has been attributed to the silencing of tumour suppressor genes, including INK4B-ARF-INK4A⁵⁷ (FIG. 1e), E-cadherin^{60,62}, p57^{KIP2} (also known as CDKN1C⁶³), p27 (REF. 64), BRCA1 (REF. 58) and adrenergic receptor β2 (REF. 59). By contrast, recurrent inactivating mutations of EZH2 have been discovered in a recent oncogenomic study of follicular lymphoma (7.2%) and diffuse large B cell lymphoma (21.7% of the germinal centre B cell subtype)⁶⁵ (TABLE 1). The identified EZH2 mutations specifically target a single tyrosine residue that is required for EZH2-mediated HMT activities towards H3K27me3 (REF. 65). It is tempting to speculate that the homeostasis of H3K27me3 is crucial in defining cellular context, and its perturbation through EZH2 deregulation might provide the optimal context for the development of distinct types of cancer; for example, differences in H3K27me3 homeostasis may underlie some differences in prostate cancer and follicular lymphoma. The precise roles of EZH2 overexpression and loss-of-function mutations in distinct cancer types remain to be more rigorously validated in genetically engineered animal models. Ideally, genomic mislocalization of EZH2 and its effect on H3K27me3 and transcription need to be examined in genetically matched normal samples compared with tumour samples. Nevertheless, EZH2 inhibition has been proposed as a therapeutic strategy to inhibit tumour growth⁵⁶. Indeed, early success for the combined use of the EZH2 inhibitor and histone deacetylase (HDAC) inhibitors has been observed in leukaemia xenograft mouse models⁶⁶. Recent comprehensive reviews^{56,57} provide further details on EZH2 in oncogenesis.

Histone methylation misread in cancer

Aberrant fusion of PHD finger motifs and misinterpretation of H3K4me3 in leukaemia. Chromosomal translocation of nucleoporin 98 (<u>NUP98</u>), a nuclear pore complex component gene, is one of the most promiscuous gene rearrangements found in various forms of haematopoietic malignancies⁶⁷. In a subset of patients with AML, NUP98 translocation results in the fusion of the amino terminus of NUP98 to the C-terminal PHD finger motif (and also nuclear localization signals) of PHF23 or JARID1A^{22,67} (FIG. 2c). Recently, leukaemia induced by NUP98-JARID1A and NUP98-PHF23 fusions has been experimentally recapitulated using in vitro and in vivo mouse models²². The leukaemogenic potential of these two fusion proteins relies on the ability of the PHD finger motif to recognize H3K4me3/2 (REF. 22) (BOX 2). A single point mutation in the PHD finger that abrogates H3K4me3 binding also abolishes leukaemic transformation; and the PHD finger can be functionally replaced by other H3K4me3-binding PHD fingers (even one from yeast), but not by those that do not recognize H3K4me3 (REF. 22). Mechanistically, binding of H3K4me3 by the NUP98-PHD finger fusion interferes with the normal differentiation of haematopoietic stem and progenitor cells by preventing the removal of H3K4me3 and inhibiting EZH2-mediated H3K27me3 at developmentally crucial genes that encode transcription factors, such as Hox, Meis1a, Gata3 and Pbx1 (REFS 22,68). As a result, the master regulator loci of haematopoiesis are locked in an active chromatin state that is characterized by high levels of H3K4me3 and histone acetylation; consequently, the expression of these genes is maintained22. Overexpression and activating mutations of these transcription factors are commonly found in human leukaemia and are sufficient

Box 2 | The plant homeodomain (PHD) finger


The PHD finger is a zinc finger-like domain, with a signature motif of Cys4-His-Cys3 to coordinate two zinc ions 120 . The folding of this \sim 60 amino acid-long domain is featured by an interleaved topology of zinc ion-coordinating residues and a couple of anti-parallel β -sheet secondary structures 5,120 . The definition of PHD fingers originates from conserved plant homeodomain proteins, and the classification and distinction of PHD fingers and other similar motifs such as the RING finger are somewhat ambiguous 120 . There are fewer than 20 typical and atypical PHD finger motifs in Saccharomyces cerevisiae, around 50 in Drosophila melanogaster and up to a couple of hundred in mammals 18,120,121 . Most PHD fingers are found in chromatin-associated factors or nuclear proteins 120,121 .

The PHD finger ligand

PHD fingers exhibit diversity and versatility in their interaction partners. Some bind to chromatin modifications, such as highly methylated H3K4 (REF. 5), unmodified H3K4 (REF. 18) and methylated H3K36 (REF. 121), and some serve as a SUMO E3 ligase to interact with the E2-conjugating enzyme¹²². The binding partners and functions of others are still unknown.

The structure of H3K4me3/2-binding PHD fingers

Recent structural analyses of several H3K4me3/2-binding PHD fingers have revealed some commonalities that underlie the specific recognition and binding of H3K4me3, which include a specialized pocket or cleft structure formed by 2-4 aromatic and/or hydrophobic residues to accommodate the H3K4me3 side chain, anti-parallel β-sheet pairing between the histone H3 backbone and a β-sheet of the PHD motif and, in many cases, positioning of H3 arginine 2 (H3R2) in an acidic pocket^{5,15-17,20-22}. The structures of H3K4me3-binding PHD fingers from two cancer-associated factors, ING2 and JARID1A, are shown in the figure part a and part b, respectively (H3 and the H3K4me3 side chain shown in green, PHD finger in lilac, zinc ion in cyan sphere and hydrophobic 'pocket' highlighted in pink; arrows represent β -sheets). With a dissociation constant (K₂) ranging from less than one to several μM , the binding of H3K4me3 by PHD fingers is one of the strongest associations between histone modification and its reading factors^{5,15–17,20–22}. The structural illustrations shown are produced using published structural coordinates that have Protein Data Bank IDs of 2G6Q, 3GL6, 2KGG and 2KGI16,22.

Table 2 I	Table 2 List of PHD finger-containing proteins that specifically 'read' H3K4me3/2						
ID	H3K4me3/2 reading motif	Known function and disease relevance	Refs				
BPTF	The second PHD finger	Component of a chromatin remodelling complex NURF, which contains a SWI/SNF family helicase and SMARCA1	13,15				
ING1	PHD finger	Component of HDAC–Sin3A transcriptional repressive complexes	14,72,75				
ING2	PHD finger	Component of HDAC–Sin3A transcriptional repressive complexes	14,72,78				
ING3	PHD finger	Forms a transcriptional activation complex with a histone acetyltransferase (HAT) Tip60	72,78				
ING4	PHD finger	Forms an HBO-containing transcriptional activation complex	72,76–78				
ING5	PHD finger	Component of a transcriptional activation complex that contains a HAT protein, either HBO or MOZ/MORF family	78				
JARID1A	The third PHD finger	H3K4me3/2-specific histone demethylase	22				
JARID1B	The third PHD finger	H3K4me3/2-specific histone demethylase	19,22*				
MLL	The third PHD finger	Histone methyltransferase, specific for H3K4	5*				
PHF2	PHD finger	Putative histone demethylase	5*				
PHF8	PHD finger	Putative histone demethylase; <i>PHF8</i> mutation associates with X-linked mental retardation	5,19*				
PHF13	PHD finger	Unknown function	5,19*				
PHF23	PHD finger	Unknown function	22				
Pygo	PHD finger	PYGO1 and PYGO2 interact with a cofactor BCL9, and are required for Wnt– β -catenin-induced transcriptional activation	89–91				
RAG2	PHD finger	A V(D)J recombinase crucial for the development and maturation of B and T cells. Loss-of-function mutations of the RAG2 PHD finger lead to severe combined immunodeficiency and Omenn syndrome	21				
TAF3	PHD finger	Component of RNA polymerase Il-associated general transcription factor machinery TFIID, which contains TATA-binding protein (TBP) and 12–13 additional TBP-associated factors, TAF1–14	19,20				

BPTF, bromodomain PHD finger transcription factor; PHD, plant homeodomain; PHF, PHD finger protein; RAG2, recombination activating gene 2; TAF3, TATA box binding protein (TBP)-associated factor, 140 kDa. * The H3K4me3-binding property was predicted based on domain homology⁵.

to block haematopoietic differentiation and induce leukaemia^{36,69}. Therefore, the perturbation of histone modification dynamics associated with haematopoiesis, as in the case of NUP98-PHD finger fusion, causes the enforced expression of vital developmental genes and interferes with appropriate transition of cellular states a crucial step in leukaemia initiation²².

In many cases, acute leukaemia is a disease of misregulated differentiation in haematopoiesis. The key to understanding how NUP98 or MLL translocations interfere with chromatin dynamics in leukaemogenesis is to first understand the mechanisms underlying the chromatin landscape changes during normal haematopoiesis. Conceivably, NUP98-PHD finger fusions might mimic some endogenous chromatin-associated machinery, functioning as a chromatin boundary factor that prevents the intrusion of transcriptional repressive complexes²². In this case, NUP98-PHD finger fusions could have a dominant-negative effect on JARID1, blocking the erasure of H3K4me3 (REF. 22); acetylation of H3K27 that is induced by NUP98-associated HATs can also antagonize the methylation of the same lysine by EZH2 complexes^{22,70} (FIGS 2c,3b). Gain-of-function mutations in the PHD finger motif — for example, NUP98-PHD finger fusions in leukaemia²² — and loss-of-function mutations in the PHD finger, as mentioned earlier for RAG2 and immunodeficiency syndromes²¹, unveil pathologies underscored by a failure to appropriately interpret histone modification18.

Somatic mutation of ING PHD fingers in solid tumours.

Another family of PHD finger-containing proteins, inhibitor of growth (ING), are putative tumour suppressors. Loss-of-function mutations of INGs (especially <u>ING1</u>, <u>ING3</u> and <u>ING4</u>) by somatic mutation, allelic loss, reduced gene expression and aberrant cytoplasmic sequestration have been reported in various solid tumours^{71,72} (TABLE 1). INGs regulate many cellular processes that are associated with tumorigenesis, including cell cycle progression, senescence, apoptosis, DNA repair, cell migration and contact inhibition71-74. All INGs have a C-terminal PHD finger that specifically binds H3K4me3 (REFS 14,75-77) (BOX 2). Despite this common feature, different INGs are incorporated into protein complexes with distinct properties in transcriptional regulation (TABLE 2). ING1 and ING2 recruit the mSin3-HDAC transcriptional repressors (FIG. 2d), whereas ING3, ING4 and ING5 recruit HATs to induce gene activation14,78. ING3 and ING4 complexes contain a HAT, either TIP60 or HBO, respectively, and ING5 complexes include either HBO or a MOZ/MORF family member as the HAT^{76,78}. INGs (ING1, ING4 and ING5) also interact with p53

Chromatin dynamics

A fine-tuning mechanism that introduces meaningful variations to chromatin and/or modulate chromatin structure, which includes DNA methylation, covalent histone modification, ATP-dependent chromatin remodelling and the use of histone variants.

Chromatin boundary factor

A factor that interacts with chromatin boundary elements to ensure the appropriate physical separation of chromatin regions that have distinct properties such as regions of active versus silenced transcription. One example is CTCF, a protein that binds to insulator cis-elements.

REVIEWS

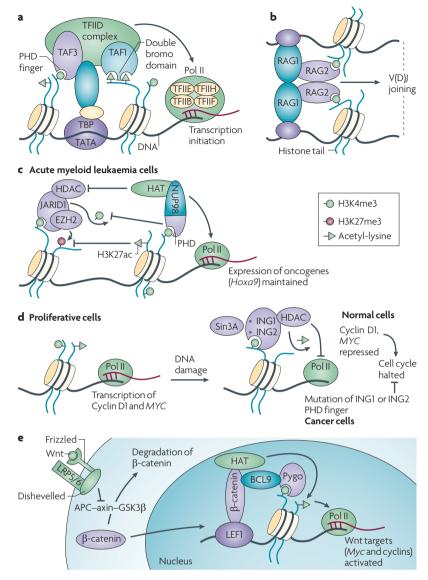


Figure 2 | Reading or mis-reading the H3K4me3 marks by PHD finger-containing factors in normal cellular processes and during cancer development. a | Interactions with histone modifications (H3K4 trimethylation (H3K4me3) recognized by the TAF3 plant homeodomain (PHD) finger 19,20 and histone acetylation by the double bromodomain of TAF1 (REF. 17) and binding to specific DNA elements (TATA-binding protein (TBP) to the TATA box) anchor and/or stabilize the TFIID complex to core promoters 19,20. **b** | Both the recognition of H3K4me3 by the RAG2 PHD finger and binding of RAG1-RAG2 complexes to recombination signal sequences are crucial for recruiting and/or stabilizing the RAG1-RAG2 complex to V(D)J gene segments during B and T cell development 18,21. c | In acute myeloid leukaemia, chromosomal translocation nucleoporin 98 (NUP98)jumonji AT-rich interactive domain 1A (JARID1A) or NUP98-PHF23 fuses the amino terminal part of a nucleoporin protein, NUP98, to an H3K4me3-binding PHD finger of JARID1A or PHF23 (REF. 22). This prevents the removal of H3K4me3 and addition of H3K27me3 thus enforcing the expression of leukaemia-associated oncogenes such as Hoxa9 and Meis1 (REF. 22). d | On DNA damage, H3K4me3 is a mark to recruit and/or stabilize the inhibitor of growth 1 (ING1) and ING2 repressive complexes to genes responsible for cell proliferation such as Myc and cyclins, leading to gene repression and the halt of cell cycle progression. A subset of cancer-associated somatic mutations of ING1 specifically interferes with the binding to H3K4me3/2 and proper response to DNA damage^{14,18,75}. **e** | Recognition of H3K4me3 by the PHD finger of Pygopus (Pygo) has been suggested to be crucial for efficient activation of the Wnt signalling pathway⁸⁹. APC, adenomatous polyposis coli; EZH2, enhancer of zeste homolog 2; GSK3β, glycogen synthase kinase 3β; HDAC, histone deacetylase. LEF1, lymphoid enhancer-binding factor 1 (also known as TCF).

and modulate its activity^{71,79-81}. Here, we focus on recent advances that link ING mutations to the misinterpretation of histone methylation in transformation.

ING1 was initially identified in a functional screen as an inhibitor of neoplastic transformation82, and somatic mutation of ING1 was later found in breast, gastric and pancreatic cancer, and squamous cell carcinoma^{71,72}. Deletion of *Ing1* in mice led to a mild phenotype only, with a slight increase in the incidence of lymphomas, indicating that other mutations may cooperate with ING1 inactivation in tumorigenesis⁷⁹. A subset of *ING1* somatic mutations found in human tumour samples specifically target its PHD finger motif 18,71-73. Some hotspot mutations, such as C215S and C253stop (the amino acid number refers to the p33^{ING1b} isoform), target the crucial zinc ioncoordinating cysteines in the PHD finger, causing global misfolding¹⁸. A recent biophysical study demonstrated that other ING1 mutations, N216S, V218I and G221V. interfere with either appropriate folding of the structural pocket to accommodate H3K4me3 or the appropriate positioning of the histone H3 tail, leading to a decrease in H3K4me3-binding affinities by 10-40-fold⁷⁵. Despite these advances, animal models that establish a direct causal role of ING1 mutations in tumorigenesis are still lacking. Nonetheless, at the cellular level, the decreased binding of ING1 to H3K4me3 has been shown to result in inefficient DNA damage repair and apoptosis⁷⁵.

ING2, an ING1-related member that is also downregulated in many types of solid tumours^{71–73}, initiates an acute response to silence proliferative genes, including cyclin D1 and MYC, and decelerates the cell cycle after DNA damage¹⁴ (FIG. 2d). This response relies on the ability of ING2 to bind to H3K4me3 marks that are associated with proliferative genes, followed by the recruitment and/or stabilization of the ING2-associated repressors HDAC1 and HDAC2 (REFS 14,78) (FIG. 2d). Eventually, histone deacetylation occurs at proliferative genes, their expression is downregulated, and cell cycle progression is halted¹⁴. As the H3K4me3 level at these genes remains the same before and after DNA damage¹⁴, it is still poorly understood what causes the recruitment of ING2 to proliferative genes after DNA damage. Recently, the association of ING2 with chromatin has been linked to phosphatidylinositol-5-phosphate (PtdIns(5)P), a lipid ligand of ING2 that was found to accumulate in the nucleus after cellular stress14,83. The binding surface for PtdIns(5)P in ING2 is located at the C terminus, which includes a small portion of the PHD finger and a lysine- and arginine-rich polybasic region⁸⁴. This polybasic region is found only in ING1 and ING2 (REFS 71,73). Further investigation is required to dissect how multivalent interactions between INGs, signalling transducers and histone modifications are coordinated to execute an efficient response to DNA damage and cellular stress.

Downregulation, allelic loss and somatic mutation of ING3 and ING4 has also been found in cancer^{71,72}. Recognition of H3K4me3 is crucial for ING4 and ING5–HBO complexes to promote genotoxic stress-induced apoptosis and to inhibit anchorage-independent cell growth^{76–78}. Association between the ING4 and ING5 PHD finger and H3K4me3 modulates the substrate

Multiple osteochondroma A skeletal disease characterized by the development of benign cartilage-capped bone tumours growing outwards from the bone surface, resulting in various orthopaedic deformities.

specificity of the HBO complexes, making H3K4me3-containing nucleosomes a preferred substrate^{76,77}. Using genome-wide chromatin immunoprecipitation (ChIP)-chip analyses, Hung *et al.*⁷⁷ observed that, after DNA damage, the recruitment of ING4–HBO complexes to the downstream targets is enhanced, followed by increased levels of H3 acetylation and transcriptional activation. Confirmed target loci include many tumour suppressor

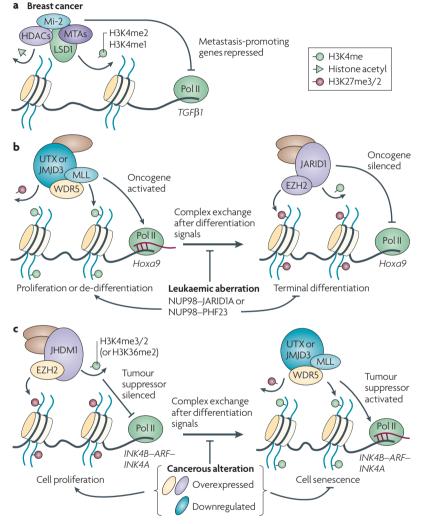


Figure 3 | Mis-erasing of histone methylation is associated with cancer development. a | LSD1 is an inhibitor of metastasis in breast cancer. LSD1 removes H3K4 dimethylation or monomethylation (H3K4me2/1) from genes associated with metastasis (such as those involved in transforming growth factor- β (TGF β) signalling) and represses their expression ⁹⁴. **b** | Cooperation between histone methyltransferases and demethylases, exemplified by mixed lineage leukaemia (MLL)-ubiquitously transcribed tetratricopeptide repeat X chromosome (UTX), MLL-JMJD3 interactions and enhancer of zeste homolog 2 (EZH2)-jumonji AT-rich interactive domain 1 (JARID1) interactions, underlies changes in H3K4me3 and H3K27me3 at oncogenes such as Hoxa9, a process that is perturbed by leukaemia oncoproteins, such as NUP98-JARID1A (FIG. 2c) or MLL fusions. c | On RAS signalling-induced stress, a complex switch in histone methyltransferases and demethylases underlies activation of the tumour suppressor locus INK4B–ARF–INK4A and the subsequent induction of senescence 101-103,105,106,123. In cancer cells, overexpression of EZH2 and JHDM1, or downregulation of JMJD3 interferes with such a switch in the chromatin state and therefore the appropriate senescence $response^{105,106,124}.\,HDAC,\,histone\,\,deacety lase;\,MTAs,\,metastasis-associated\,proteins;$ Pol II, RNA polymerase II.

genes such as PHD2 (also known as EGLN1 and HPH2) and exostosin 1 (EXT1)^{76,77}. PHD2 is an inhibitor of hypoxia-inducible factor (HIF) and its downregulation results in increased angiogenesis in tumour tissues and the promotion of tumorigenesis⁸⁵. Mutations in EXT1 and EXT2 are responsible for multiple osteochondroma, a skeletal disease that is characterized by benign bone tumours⁸⁶. The misregulation of these potential tumour suppressors needs to be further examined in primary tumour samples and animal models harbouring loss of ING4.

Notably, both types of ING complexes (ING1-ING2 and ING4-ING5) seem to engage tumour suppressive activities⁷⁴. Despite having opposite effects on transcriptional regulation73,78, different INGs can apparently target different sets of genes — both oncogenic and tumour suppressor loci^{14,77}. However, this targeting specificity of distinct INGs cannot be determined by their PHD fingers, as they all bind to H3K4me3. Nevertheless, reading of H3K4me3 by the PHD finger is a crucial step for efficient chromatin binding and DNA damage- or stress-induced responses^{14,75-77}. Many other questions remain unsolved. For example, do different ING-containing complexes cooperate? And how is the interaction of p53 and other DNA-binding factors involved in these cellular responses81? It is also important to appreciate how events such as sensing and signalling of DNA damage, assembly and recruitment of ING complexes, chromatin recognition and modulation, the subsequent transcriptional regulation, DNA repair and chromatin restoration post-repair, are integrated.

Pygopus, a factor that links Wnt- β -catenin signalling to H3K4 methylation. Mutations in components of the Wnt-β-catenin pathway lead to oncogenesis in several tissue types87. Pygopus (Pygo) has recently been identified as a crucial factor for efficient Wnt-β-catenin signalling^{87,88}. Pygo interacts with BCL9, an adaptor protein that directly associates with β -catenin⁸⁹ (FIG. 2e). The C terminus of all Pygo homologues (pygopus in Drosophila melanogaster, and PYGO1 and PYGO2 in mammals) contains a PHD finger, which uses two surfaces to interact with BCL9 and H3K4me2/3 simultaneously (FIG. 2e); the binding of H3K4me2/3 by Pygo is enhanced by its association with BCL9 (REF. 89). Pygo2 was found highly expressed in mammary progenitor cells and upregulated in breast cancer cells, and the H3K4me2/3-binding property of PYGO2 seems to be crucial for the cell growth of breast cancer cells^{90,91}. However, a separate study indicates that the abolition of interaction between H3K4me2/3 and pygopus does not interfere with the activation of Wnt signalling in D. melanogaster^{89,92}. Further investigation of cross-talk among pygopus, Wnt-β-catenin signalling and histone modifications needs to be carried out to address these differences.

Histone methylation is mis-erased in cancer

Histone lysine demethylases (HDMs), especially those that remove methylation on H3K4 and H3K27, are found mutated or deregulated in human cancer (TABLE 1).

Misregulation of H3K4-specific demethylases in cancers. LSD1 is the first histone demethylase (HDM) that was isolated by Shi and colleagues, and this nuclear amine oxidase can convert dimethyl or monomethyl H3K4 to the unmodified state93. LSD1 was purified as a stable component of several HDAC-containing transcriptional repressor complexes⁹³. Recently, one such repressive complex, LSD1-Mi-2-NuRD-HDACs (FIG. 3a), has been shown to inhibit metastasis in breast cancer94. LSD1 removes H3K4me2/1 from several downstream targets that include the pathways involving transforming growth factor-β (TGFβ) signalling, cell growth, and migration and invasion94. As a result, the expression of these targets is repressed in breast cancer cells⁹⁴. TGFβ1, a key regulator of epithelial-to-mesenchymal transitions and tumour metastasis, is a crucial downstream effector that is inhibited by LSD1-Mi-2-NuRD complexes94. Knocking down LSD1 increases the invasive and metastatic potential of breast cancer cells, whereas overexpression of LSD1 suppresses the invasiveness of breast cancer cells94. LSD1 was found downregulated in breast carcinoma tissues94. In contrast to its canonical functions, LSD1 also interacts with androgen receptor (AR). This LSD1-AR complex erases methylation of H3K9, a repressive marker, thus leading to the activation of AR signalling in prostate cancer cells95. In addition, LSD1 also targets non-histone substrates such as p53. Lysine-specific demethylation of p53 by LSD1 represses p53-induced transcriptional activation and apoptosis23. These observations show that LSD1 has both tumour suppressive and oncogenic functions, and these activities are dependent on cellular contexts and substrate differences.

The understanding of histone demethylation quickly proceeded with the identification of a larger and more versatile family of HDMs — the jumonji family of lysine demethylases⁶. The jumonji family of HDMs differ from LSD1 in that these hydroxylases can remove lysine trimethylation⁶. JARID1A, a member of H3K4me3/2-specific jumonji demethylases, was found translocated in myeloid leukaemia (FIG. 2c). JARID1B (also known as PLU-1 and KDM5B), a related H3K4me3/2 HDM gene, was found overexpressed in advanced stages of breast and prostate cancer^{96,97}. JARID1B facilitates the G1/S transition in the cell cycle and attenuates the mitotic spindle checkpoint of cancer cells^{96,98}. Using a syngeneic tumour transplantation model, Yamane et al.96 showed that JARID1B overexpression promotes the growth of mammary carcinoma. JARID1B represses metallothionein genes and several known tumour suppressor genes (BRCA1 and caveolin 1) by inducing the erasure of H3K4me3/2 (REFS 96,98). In a recent large-scale next-generation sequencing of primary renal cell carcinoma (RCC) genomes, Dalgliesh et al.99 discovered several recurrent mutations that inactivate histone-modifying enzymes, including truncating mutations of <u>JARID1C</u> (~3% of all RCC samples) and <u>SETD2</u> (~3%), which is a histone H3 lysine 36-specific methyltransferase gene99. Inactivation of JARID1C, the third member of the H3K4me3/2-specific HDM genes, is correlated with the transcriptional alteration of a specific gene signature in RCC tumour samples99. Most RCCs harbouring JARID1C mutation also contain a mutation

at von Hippel–Lindau (*VHL*), a negative regulator of HIF, suggesting that the *JARID1C* and *VHL* mutations may cooperate in driving the tumorigenesis of RCC⁹⁹. It is curious that both overexpression and loss-of-function mutations of the JARID1 gene family have been suggested to contribute to oncogenesis, although in different cancer types (TABLE 1).

IHDM1B (also known as FBXL10, NDY1 and KDM2B) and JHDM1A (also known as FBXL11, NDY2 and KDM2A) encode another family of histone demethvlases that may harbour dual methylation-erasing activities for H3K36me2/1 and H3K4me3 (REFS 100-102). In a screen that was based on retroviral integration-induced T cell lymphomas, Pfau et al. 103 found that upregulation of JHDM1B is a common event in T cell lymphomas. JHDM1B directly represses the tumour suppressor locus Ink4b-Arf-Ink4a by erasing H3K36me2 and/or H3K4me3 (REFS 101–103). Both JHDM1B and the related JHDM1A inhibit replicative senescence and oncogeneinduced senescence, which are a crucial barrier of oncogenesis 101-103. JHDM1B is downregulated after senescence induction in normal tissues, and acquired expression of JHDM1B in tumours prevents cell senescence, thus facilitating cancerous transformation^{101,102} (FIG. 3c).

Misregulation of H3K27-specific demethylases in cancers. Sporadic inactivating mutations of ubiquitously transcribed tetratricopeptide repeat X chromosome (UTX), an H3K27me3/2-specific HDM gene, have recently been reported in a subset of multiple myeloma, oesophageal squamous cell carcinoma and renal cell carcinoma¹⁰⁴. Restoration of UTX in UTX-mutated cancer cells reduced H3K27me3 at tested targets and slowed cell proliferation¹⁰⁴. *JMJD3*, a related H3K27me3/2-specific HDM gene, was found upregulated during RAS-induced senescence, and opposite to the action of JHDM1 and EZH2, JMJD3 activates the Ink4a-Arf locus^{105,106} (FIG. 3c). The expression of JMJD3 has been found downregulated in various cancers, including lung and liver cancer 105,106. These observations indicate putative tumour suppressive roles for UTX and JMJD3. Despite emerging evidence that links HDMs to cancer, it remains to be investigated using more rigorous assays whether the observed mutation is causal or merely the consequence of tumorigenesis.

Cooperation of histone modifiers

One complication of classifying writing, reading and erasing histone modifications is that these processes often function in a concerted way. For example, some histone modification writers or erasers, such as MLL or JARID1A, harbour an intrinsic PHD finger module to read H3K4me3 (TABLE 2). Currently, it is unclear how this reading property is involved in the writing and erasing steps of histone methylation. In the context of leukaemia induction, NUP98–JARID1A (FIG. 2c), a translocation form of JARID1A, loses its histone methylation erasing activity and relies on the H3K4me3-reading PHD finger to initiate leukaemogenesis²². In addition, histone modification sites simultaneously to coordinate a robust response. For instance, UTX is a stable component of the

Syngeneic tumour transplantation model A model of tumorigenesis produced by inoculating mouse or rat tumour cells into a corresponding immunocompetent mouse or rat. Syngeneic tumour models have a normal host immune response and tumour microenvironment, and therefore more closely resemble a biologically relevant situation than xenograft models that use immunodeficient mice.

Next-generation sequencing A still-developing technology to sequence DNA in a massively parallel fashion, therefore sequencing is achieved at a much faster speed and lower cost than traditional gel-based methods. This technology makes direct sequencing of large numbers of human patient samples possible, including those from cancers.

MLL2- and MLL3-containing complexes, which erase H3K27me3 and also write H3K4me3 at target chromatin¹⁰⁷. Consistent with the action of UTX, MLL is recruited to the Ink4a locus in oncogene-induced checkpoint responses, and UTX and MLL may cooperate to promote INK4a expression and suppress cancerous transformation¹⁰⁸ (FIG. 3c). Similarly, JHDM1B and JARID1A were reported to interact with EZH2 (REFS 102, 109), and JMJD3 interacts with MLL110. In these scenarios, there is a common theme centred on the epigenetic repression process of the tumour suppressor INK4B-ARF-INK4A locus in cancer cells. This features the elimination of active modifications (H3K4me3) and the addition of repressive chromatin modifications (H3K27me3 or DNA methylation), which is accomplished by cooperation between histone demethylase deregulation (JARID1B, JHDM1B, UTX and IMID3), histone methyltransferases (EZH2 overexpression) and/or DNA hypermethylation to establish a stable silenced state of the INK4B-ARF-INK4A locus (FIG. 3c).

Conclusions and future directions

Histone modification, as exemplified by H3K4me3 and H3K27me3 in this Review, provides a crucial regulatory measure for defining cellular context and governing gene transcription, V(D)J DNA recombination, DNA damage repair and many other DNA-templated processes. Rapidly increasing evidence has indicated that miswriting, misreading, and/or mis-erasing of histone modifications contributes to the initiation and development of human cancers. However, the underlying mechanisms of chromatin regulation in oncogenesis are complex and remain to be delineated in a cellular context-dependent manner.

First, it remains unclear whether many mutations and deregulations of epigenetic players are the 'drivers' or 'passengers' of oncogenesis. More rigorous evidence is generally lacking to establish the causality of deregulation of the writing, reading and erasing of histone modification events in oncogenesis. Generating animal models with ING mutations will be needed for defining their oncogenic roles, and as useful tools for understanding the mechanisms driving oncogenesis. Similar issues can be applied to the inactivating mutations of *JARID1C* found in renal carcinoma⁹⁹ or for *EZH2* in germinal centre diffuse large B cell lymphoma⁶⁵.

In addition, the regulatory mechanisms through histone modification can be cell type or context specific. To dissect the misregulation of histone modifications and epigenetic imbalances in cancer cells, it is important to understand how normal cells use dynamic chromatin modifications to establish the appropriate epigenetic homeostasis and induce state transitions at crucial loci encoding oncogenes (for example, the HOX gene cluster in haematopoietic lineages (FIG. 3b)) or tumour suppressor genes (for example, the INK4B-ARF-INK4A cluster (FIG. 3c) in normal developmental and cellular contexts. For example, although DOT1L-mediated H3K79me and transcription elongation have been proposed as mechanisms responsible for aberrant gene activation that are hijacked by MLL fusions in leukaemia cells (FIG. 2b,c), they fail to explain why the MLL fusion, but not wildtype MLL, is refractory to the silencing mechanism that

can turn off MLL targets in haematopoiesis. Recently, it has been shown that the artificial addition of the MLL PHD fingers, a portion not retained in MLL fusions, can inhibit MLL fusion-induced transformation^{111,112}. These studies shed light on the dynamic regulation of wildtype MLL complexes and the loss of such an inhibitory mechanism may contribute to the conversion of the MLL fusion to a constitutive activator 111,112. This inhibitory effect seems to be due to the recruitment of the repressive factors cyclophilin 33 (CYP33) and HDACs by the third PHD finger of MLL112 and/or the inhibition of MLL targeting¹¹¹. The third PHD finger of MLL has been predicted to bind to H3K4me3/2 (REF. 5). So far, CYP33 has only been reported as a PHD finger ligand for MLL112, thus this mechanism may be MLL specific. Further efforts are needed to understand how the PHD fingers distinguish normal MLL complexes and their leukaemia fusion forms in terms of transcriptional regulation.

Furthermore, it is unclear how the gene-target specificity, if any, of many histone-modifying or modificationreading factors is achieved. For example, the recruitment of different sets of INGs to distinct genomic loci cannot be explained by H3K4me3 recognition. Although menin and LEDGF were found to be required to tether MLL to its target gene loci³¹, it is far from clear how MLL fusions are targeted to their downstream genes in leukaemia. Besides the intrinsic motifs that are associated with chromatin and histone modification¹⁷, histone modification reading and enzymatic factors can be recruited to their targets by DNA-binding factors, co-activators, co-repressors, and Pol II-associated mediators and machineries. For example, nuclear receptors assemble different sets of cofactors and histone-modifying enzymes after the activation or depletion of hormone signalling¹¹³, and we refer readers to some comprehensive reviews on this topic $^{113-115}$.

Finally, as some histone-modifying enzymes also function on non-histone substrates^{24,25,116}, it becomes difficult to ascribe observed results to histone modification alone. Experiments need to be carefully designed, ideally by applying a combination of approaches and methodologies to dissect the effects that originate from histone modification.

Is it time for the therapeutic intervention of epigenetic players that modify or interpret chromatin modifications? The first goal is to identify the crucial epigenetic factors that have well-defined roles in the initiation or development of cancers. For example, the H3K4me3-binding pocket is a potential therapeutic target for the treatment of the leukaemia-harbouring translocations NUP98-JARID1A and NUP98-PHF23 (REF. 22). In addition, many histone-modifying enzymes are ideal targets as their enzymatic activity is druggable⁵⁶. However, the enthusiasm of developing such inhibitors can be curbed by a general concern of potential side effects and complications. For example, the H3K4me3-binding pockets of different PHD finger proteins (TABLE 2) have a high structural similarity 15,16,20,22, and these factors are involved in several important cellular processes, such as transcription¹⁹. However, we remain confident that further investigation will lead to the discovery of relatively specific druggable epigenetic factors that represent the Achilles heel of tumour cells. In support, the clinical success of HDAC inhibitors in cutaneous T cell lymphoma and DNA demethylating agents in myelodysplastic syndrome offers a compelling argument^{4,117,118}. Recently, a genomic study has shown that pharmacological doses of all-*trans* retinoic acid induces a specific effect on histone H3 deacetylation in PML–RARα fusion-positive acute promyelocytic leukaemia cells (PMLs), and the change in H3 acetylation underlies

differentiation therapy and epigenetic therapy of PML¹¹⁹. This study also provides a rationale for developing HDAC inhibitors as an alternative therapy for patients with PML that are refractory to current standard treatments. With the rapidly growing attention and new discoveries of epigenetic factors that function to govern a steady-state balance or the output of histone modifications, there is considerable promise and excitement on the horizon.

- Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. *Nature* 403, 41–45 (2000).
- Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).
 In references 1 and 2, the authors first proposed the histone code hypothesis that is currently under active investigation.
- Wang, G. G., Allis, C. D. & Chi, P. Chromatin remodeling and cancer, Part I: covalent histone modifications. *Trends Mol. Med.* 13, 363–372 (2007).
- Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).
- Ruthenburg, A. J., Allis, C. D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30 (2007).
- Klose, R. J. & Zhang, Y. Regulation of histone methylation by demethylimination and demethylation. Nature Rev. Mol. Cell Biol. 8, 307–318 (2007).
- Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).
- Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).
- Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).
- 10. Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. *Nature Rev. Genet.* 7, 21–33 (2006). The authors propose the epigenetic progenitor origin model of oncogenesis, in which cancer first arises from polyclonal epigenetic disruption of
- stem and progenitor cells.
 Seligson, D. B. et al. Global histone modification patterns predict risk of prostate cancer recurrence.
 Nature 435, 1262–1266 (2005)
- Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391–400 (2005).
- Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).
- Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. *Nature* 442, 96–99 (2006).
- Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006).
- 16. Pena, P. V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100–103 (2006). References 13–16 are the landmark papers that first described PHD finger motifs as readers or effectors of H3K4me3. Reference 14 also unveils the role of the ING2 tumour suppressor and the reading of H3K4me3 in efficient DNA damage-induced responses aiming to decelerate cell cycle progression.
- Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. *Nature Struct. Mol. Biol.* 14, 1025–1040 (2007).
- Baker, L. A., Allis, C. D. & Wang, G. G. PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. *Mutat. Res.* 647, 3–12 (2008).
- Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4 Cell 131. 58–69 (2007).
- van Ingen, H. et al. Structural insight into the recognition of the H3K4me3 mark by the TFIID subunit TAF3. Structure 16, 1245–1256 (2008).

- Matthews, A. G. et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J. recombination. Nature 450, 1106–1110 (2007).
 The first report that links the misreading of histone modification to human disease.
- Wang, G. G. et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459, 847–851 (2009).
 The first report that links misregulation in functional readout of histone modification to human cancer.
- Huang, J. et al. p53 is regulated by the lysine demethylase LSD1. Nature 449, 105–108 (2007).
- Lan, F. & Shi, Y. Epigenetic regulation: methylation of histone and non-histone proteins. *Sci. China C. Life Sci.* 52, 311–322 (2009).
- Sims, R. J., 3rd & Reinberg, D. Is there a code embedded in proteins that is based on posttranslational modifications? *Nature Rev. Mol. Cell Biol.* 9, 815–820 (2008).
- Brownell, J. E. et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. *Cell* 84, 843–851 (1996).
- Krivtsov, A. V. & Ármstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. *Nature Rev. Cancer* 7, 823–833 (2007).
- Milne, T. A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).
- Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell 10, 1119–1128 (2002).
- Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nature Struct. Mol. Biol. 13, 713–719 (2006).
- Yokoyama, A. & Cleary, M. L. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. *Cancer Cell* 14, 36–46 (2008).
- Hess, J. L. MLL: a histone methyltransferase disrupted in leukemia. *Trends Mol. Med.* 10, 500–507 (2004).
- Shih, L. Y. et al. Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement. Leukemia 20, 218–223 (2006).
- Dorrance, A. M. et al. The MII partial tandem duplication: differential, tissue-specific activity in the presence or absence of the wild-type allele. Blood 112, 2508–2511 (2008).
- Dorrance, A. M. et al. MII partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J. Clin. Invest. 116, 2707–2716 (2006).
- Kroon, E. et al. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 17, 3714–3725 (1998).
- Argiropoulos, B. & Humphries, R. K. Hox genes in hematopoiesis and leukemogenesis. *Oncogene* 26, 6766–6776 (2007).
- 38. Slany, R. K. The molecular biology of mixed lineage
- leukemia. *Haematologica* **94**, 984–993 (2009).

 39. Okada, Y. *et al.* hDOT1L links histone methylation to leukemogenesis. *Cell* **121**, 167–78 (2005).

 The first report that links MLL fusions to DOT1L, a histone H3K79 methyltransferase, in leukaemia.
- Okada, Y. et al. Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nature Cell Biol. 8, 1017–1024 (2006).
- Mueller, D. et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110, 4445–4454 (2007).
- Milne, T. A., Martin, M. E., Brock, H. W., Slany, R. K. & Hess, J. L. Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. *Cancer Res.* 65, 11367–11374 (2005).

- Krivtsov, A. V. et al. H3K79 methylation profiles define murine and human MLL–AF4 leukemias. Cancer Cell 14, 355–368 (2008).
- Guenther, M. G. et al. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev. 22, 3403–3408 (2008).
- Thiel, A. T. et al. MLL–AF9-induced leukemogenesis requires coexpression of the wild-type MII allele. Cancer Cell 17, 148–159 (2010).
- Steger, D. J. et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell. Biol. 28, 2825–2839 (2008).
- Schulze, J. M. et al. Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Mol. Cell 35, 626–641 (2009).
- Mellor, J. Linking the cell cycle to histone modifications: Dot1, G1/S, and cycling K79me2. *Mol. Cell* 35, 729–730 (2009).
- Mohan, M. et al. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev. 24, 574–589 (2010).
- Bitoun, E., Oliver, P. L. & Davies, K. E. The mixedlineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. *Hum. Mol. Genet.* 16, 92–106 (2007).
- Park, G., Gong, Z., Chen, J. & Kim, J. E. Characterization of the DOT1L network: implications of diverse roles for DOT1L. Protein J. 29, 213–223 (2010).
- Zhang, W., Xia, X., Reisenauer, M. R., Hemenway, C. S. & Kone, B. C. Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCα in an aldosterone-sensitive manner. *J. Biol. Chem.* 281, 18059–18068 (2006).
- Lin, C. et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol. Cell 37, 429–437 (2010).
- Mueller, D. et al. Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol. 7, e1000249 (2009).
- Cheung, N., Chan, L. C., Thompson, A., Cleary, M. L. & So, C. W. Protein arginine-methyltransferase-dependent oncogenesis. *Nature Cell Biol.* 9, 1208–1215 (2007).
- Simon, J. A. & Lange, C. A. Roles of the EZH2 histone methyltransferase in cancer epigenetics. *Mutat. Res.* 647, 21–29 (2008).
- Bracken, A. P. & Helin, K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nature Rev. Cancer 9, 773–784 (2009).
- Gonzalez, M. E. et al. Downregulation of EZH2 decreases growth of estrogen receptor-negative invasive breast carcinoma and requires BRCA1. Oncogene 28, 843–853 (2009).
- 59. Yu, J. et al. Integrative genomics analysis reveals silencing of β-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 12, 419–431 (2007). A comprehensive study of EZH2 and its role in the promotion of prostate cancer by using in vitro cell and xenograft tumour models, and genomic approaches.
- Cao, Q. et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274–7284 (2008).
- Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100. 11606–11611 (2003).
- Fujii, S. & Ochiai, A. Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. *Cancer Sci.* 99, 738–746 (2008).

- 63. Yang, X. et al. CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS ONE 4, e5011 (2009).
- Ougolkov, A. V., Bilim, V. N. & Billadeau, D. D. Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2. Clin. Cancer Res. 14, 6790-6796 (2008).
- Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature Genet. **42** 181-185
- Fiskus, W. et al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 114, 2733-2743 (2009).
 - A study showing an early success of the combined use of the EZH2 inhibitor and HDAC inhibitors in the treatment of leukaemia
- Xu, S. & Powers, M. A. Nuclear pore proteins and cancer. Semin. Cell Dev. Biol. 20, 620-630 (2009).
- Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80-93 (2009)
- Sykes, D. B. & Kamps, M. P. E2a/Pbx1 induces the rapid proliferation of stem cell factor-dependent murine pro-T cells that cause acute T-lymphoid or myeloid leukemias in mice. Mol. Cell. Biol. 24, 1256-1269 (2004).
- Pasini, D. et al. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res. 12 April 2010 [epub ahead of print].
- Coles, A. H. & Jones, S. N. The ING gene family in the regulation of cell growth and tumorigenesis. J. Cell. Physiol. 218, 45-57 (2009).
- Ythier, D., Larrieu, D., Brambilla, C., Brambilla, E. & Pedeux, R. The new tumor suppressor genes ING: genomic structure and status in cancer. Int. J. Cancer **123**, 1483–1490 (2008).
- Soliman, M. A. & Riabowol, K. After a decade of study-ING, a PHD for a versatile family of proteins. Trends Biochem. Sci. 32, 509-519 (2007).
- Shah, S., Smith, H., Feng, X., Rancourt, D. E. & Riabowol, K. ING function in apoptosis in diverse model systems. *Biochem. Cell Biol.* **87**, 117–125
- Pena, P. V. et al. Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J. Mol. Biol. 380, 303-312 (2008).
 - A structural study to demonstrate that cancer-associated somatic mutations of ING1 interfere with its H3K4me3-reading activity.
- Saksouk, N. et al. HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol. Cell **33**, 257–265 (2009).
- Hung, T. et al. ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol. Cell 33, 248-256 (2009).
- Doyon, Y. et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol. Cell 21, 51-64 (2006).
 - References 77 and 78 demonstrate that a putative tumour suppressor ING4 coordinates the reading of H3K4me3 to subsequent events of chromatin modulation and events related to regulation of cell growth and apoptosis.
- Coles, A. H. et al. p37Ing1b regulates B-cell proliferation and cooperates with p53 to suppress diffuse large B-cell lymphomagenesis. Cancer Res. 68, 8705-8714 (2008)
- Shiseki, M. et al. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res. 63, 2373-2378 (2003).
- Garkavtsev, I. et al. The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature **391**, 295–298 (1998).
- Garkavtsev, I., Kazarov, A., Gudkov, A. & Riabowol, K. Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nature Genet. **14**, 415–420 (1996).
 - References 81 and 82 are initial reports that describe the tumour suppressive activity of ING family proteins.

- Jones, D. R. et al. Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kβ. Mol. Cell 23, 685-695 (2006).
- Huang, W. et al. Stabilized phosphatidylinositol-5-phosphate analogues as ligands for the nuclear protein ING2: chemistry, biology, and molecular modeling. J. Am. Chem. Soc. 129, 6498-6506 (2007).
- Chan, D. A. et al. Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrowderived cell recruitment. Cancer Cell 15, 527-538 (2009).
- 86 Jennes, I. et al. Multiple osteochondromas: mutation update and description of the multiple osteochondromas mutation database (MOdb). Hum. Mutat. **30**, 1620–1627 (2009).
- Klaus, A. & Birchmeier, W. Wnt signalling and its impact on development and cancer. Nature Rev. Cancer 8, 387-398 (2008).
- Kramps, T. et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 109, 47-60
- Fiedler, M. et al. Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex. *Mol. Cell* **30**, 507–518 (2008).
- Gu, B. et al. Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation. J. Cell Biol. **185**, 811-826 (2009).
- Andrews, P. G., Lake, B. B., Popadiuk, C. & Kao, K. R. Requirement of Pygopus 2 in breast cancer. *Int. J. Oncol.* **30**, 357–363 (2007).
- Kessler, R., Hausmann, G. & Basler, K. The PHD domain is required to link Drosophila Pygopus to Legless/β-catenin and not to histone H3. Mech. Dev. 126, 752-759 (2009).
- Shi Y et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941-953 (2004).
- Wang, Y. et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138, 660-672 (2009).
- A comprehensive study of LSD1, a histone H3K4me2/1 demethylase, and its role in the inhibition of the metastasis in breast cancers.
- Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature **437**, 436–439 (2005).
- Yamane, K. et al. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol. Cell 25, 801-812 (2007)
 - A study describing the functions of PLU1 in H3K4me3/2 demethylation and the promotion of breast cancer development.
- Xiang, Y. et al. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. *Proc. Natl Acad. Sci. USA* **104**, 19226–19231 (2007). Scibetta, A. G. *et al.* Functional analysis of the
- transcription repressor PLU-1/JARID1B. Mol. Cell. Biol. 27, 7220-7235 (2007).
- Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. *Nature* **463**, 360–363 (2010).
- Frescas, D., Guardavaccaro, D., Bassermann, F. Koyama-Nasu, R. & Pagano, M. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of
- ribosomal RNA genes. *Nature* **450**, 309–313 (2007). He, J., Kallin, E. M., Tsukada, Y. & Zhang, Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15^{Ink4b}. Nature Struct. Mol. Biol. 15, 1169-1175 (2008)
- 102. Tzatsos, A., Pfau, R., Kampranis, S. C. & Tsichlis, P. N. Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus. Proc. Natl Acad. Sci. USA 106, 2641-2646 (2009).
- 103. Pfau, R. et al. Members of a family of JmjC domaincontaining oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. *Proc. Natl Acad. Sci. USA* **105**, 1907–1912 (2008).
- 104. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nature Genet. 41, 521-523 (2009).
- 105. Barradas, M. et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev. 23, 1177-1182 (2009)
- 106. Agger, K. et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 23, 1171-1176 (2009).

- 107. Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and
- development. *Nature* **449**, 731–734 (2007). 108. Kotake, Y., Zeng, Y. & Xiong, Y. DDB1–CUL4 and MLL1 mediate oncogene-induced p16INK4a activation. Cancer Res. 69, 1809-1814 (2009).
- 109. Pasini, D. et al. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-repressive complex 2. *Genes Dev.* **22**, 1345–1355 (2008).
- 110. De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of Polycomb-mediated gene silencing. Cell 130, 1083-1094 (2007).
- Muntean, A. G., Giannola, D., Udager, A. M. & Hess, J. L. The PHD fingers of MLL block MLL fusion protein-mediated transformation. Blood 112, 4690-4693 (2008).
- 112. Chen, J. et al. Loss of MLL PHD finger 3 is necessary for MLL-ENL-induced hematopoietic stem cell immortalization. Cancer Res. 68, 6199-6207 (2008).
- 113. Perissi, V., Jepsen, K., Glass, C. K. & Rosenfeld, M. G. Deconstructing repression: evolving models of co-repressor action. Nature Rev. Genet. 11, 109-123 (2010)
- 114. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707-719 (2007).
- 115. Wu, S. C. & Zhang, Y. Minireview: role of protein methylation and demethylation in nuclear hormone signaling. Mol. Endocrinol. 23, 1323-1334
- 116. Zhang, K. & Dent, S. Y. Histone modifying enzymes and cancer: going beyond histones. J. Cell. Biochem. 96, 1137-1148 (2005).
- 117 Minucci S & Pelicci P G Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Rev. Cancer 6, 38-51
- 118. Lee, M. J., Kim, Y. S., Kummar, S., Giaccone, G. & Trepel, J. B. Histone deacetylase inhibitors in cancer therapy. *Curr. Opin. Oncol.* **20**, 639–649 (2008).
- 119. Martens, J. H. et al. PML-RARa/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 17, 173-185 (2010).
- 120. Bienz, M. The PHD finger, a nuclear proteininteraction domain. Trends Biochem. Sci. 31, 35-40 (2006).
- Shi, X. et al. Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. *J. Biol. Chem.* **282**, 2450–2455 (2007).
- 122. Peng, J. & Wysocka, J. It takes a PHD to SUMO. Trends Biochem. Sci. 33, 191-194 (2008).
- 123. Kotake, Y. et al. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16^{INK4} tumor suppressor gene. *Genes Dev.* **21**, 49–54 (2007).
- 124. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525-530 (2007).

Acknowledgements

Funding for C.D.A. is provided by the US National Institutes of Health Merit Grant GM53512, a Specialized Center of Research (SCOR) award from the Leukemia and Lymphoma Society, and a grant from the Starr Cancer Consortium. P.C. is a Medical Oncology fellow of Memorial Sloan-Kettering Cancer Center, and G.G.W. is a Leukemia and Lymphoma Society Fellow. We thank A. Ruthenburg and Z. Wang for the critical reading of this manuscript and help with illustration.

Competing interests statement

The authors declare no competing financial interests.

DATABASES

Entrez Gene: http://www.ncbi.nlm.nih.gov/gene Hoxa9 | ING1 | ING3 | ING4 | JARID1B | JARID1C | NUP98 | UTX UniProtKB: http://www.uniprot.org DOT1L|ENL|EZH2|GCN5|ING2|ING5|ARID1A|LEDGE| menin | MLL | RAG2

FURTHER INFORMATION

C. David Allis' homepage: http://lab.rockefeller.edu/allis

ALL LINKS ARE ACTIVE IN THE ONLINE PDF